|
import yfinance as yf |
|
from backtesting import Backtest |
|
import pandas as pd |
|
import random |
|
|
|
from strategies import SMC_test, SMC_ema, SMCStructure |
|
|
|
def fetch(symbol, period, interval): |
|
df = yf.download(symbol, period=period, interval=interval) |
|
df.columns =df.columns.get_level_values(0) |
|
return df |
|
|
|
def smc_plot_backtest(data, filename, swing_hl, **kwargs): |
|
bt = Backtest(data, SMC_test, **kwargs) |
|
bt.run(swing_hl=swing_hl) |
|
return bt.plot(filename=filename, open_browser=False) |
|
|
|
def smc_ema_plot_backtest(data, filename, ema1, ema2, closecross, **kwargs): |
|
bt = Backtest(data, SMC_ema, **kwargs) |
|
bt.run(ema1=ema1, ema2=ema2, close_on_crossover=closecross) |
|
return bt.plot(filename=filename, open_browser=False) |
|
|
|
def smc_structure_plot_backtest(data, filename, swing_hl, **kwargs): |
|
bt = Backtest(data, SMCStructure, **kwargs) |
|
bt.run(swing_window=swing_hl) |
|
return bt.plot(filename=filename, open_browser=False) |
|
|
|
def smc_backtest(data, swing_hl, **kwargs): |
|
return Backtest(data, SMC_test, **kwargs).run(swing_hl=swing_hl) |
|
|
|
def smc_ema_backtest(data, ema1, ema2, closecross, **kwargs): |
|
return Backtest(data, SMC_ema, **kwargs).run(ema1=ema1, ema2=ema2, close_on_crossover=closecross) |
|
|
|
def smc_structure_backtest(data, swing_hl, **kwargs): |
|
return Backtest(data, SMCStructure, **kwargs).run(swing_hl=swing_hl) |
|
|
|
def random_test(strategy: str, period: str, interval: str, no_of_stocks: int = 5, **kwargs): |
|
nifty50 = pd.read_csv("data/ind_nifty50list.csv") |
|
ticker_list = pd.read_csv("data/Ticker_List_NSE_India.csv") |
|
|
|
|
|
nifty50 = nifty50.merge(ticker_list, "inner", left_on=['Symbol'], right_on=['SYMBOL']) |
|
|
|
|
|
random_indices = random.sample(range(0, len(nifty50)), no_of_stocks) |
|
|
|
df = pd.DataFrame() |
|
|
|
for i in random_indices: |
|
|
|
ticker_symbol = nifty50['YahooEquiv'].values[i] |
|
data = fetch(ticker_symbol, period, interval) |
|
|
|
if strategy == "Order Block": |
|
backtest_results = smc_backtest(data, kwargs['swing_hl']) |
|
elif strategy == "Order Block with EMA": |
|
backtest_results = smc_ema_backtest(data, kwargs['ema1'], kwargs['ema2'], kwargs['cross_close']) |
|
elif strategy == "Structure trading": |
|
backtest_results = smc_structure_backtest(data, kwargs['swing_hl']) |
|
else: |
|
raise Exception('Strategy not found') |
|
|
|
|
|
backtest_results = backtest_results.to_frame().transpose() |
|
|
|
backtest_results['stock'] = ticker_symbol |
|
|
|
|
|
|
|
|
|
cols = ['stock', 'Start', 'End', 'Return [%]', 'Equity Final [$]', 'Buy & Hold Return [%]', '# Trades', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]'] |
|
backtest_results = backtest_results[cols] |
|
|
|
df = pd.concat([df, backtest_results]) |
|
|
|
df = df.sort_values(by=['Return [%]'], ascending=False) |
|
|
|
return df |
|
|
|
def complete_test(strategy: str, period: str, interval: str, **kwargs): |
|
nifty50 = pd.read_csv("data/ind_nifty50list.csv") |
|
ticker_list = pd.read_csv("data/Ticker_List_NSE_India.csv") |
|
|
|
|
|
nifty50 = nifty50.merge(ticker_list, "inner", left_on=['Symbol'], right_on=['SYMBOL']) |
|
|
|
df = pd.DataFrame() |
|
|
|
for i in range(len(nifty50)): |
|
|
|
ticker_symbol = nifty50['YahooEquiv'].values[i] |
|
data = fetch(ticker_symbol, period, interval) |
|
|
|
if strategy == "Order Block": |
|
backtest_results = smc_backtest(data, kwargs['swing_hl']) |
|
elif strategy == "Order Block with EMA": |
|
backtest_results = smc_ema_backtest(data, kwargs['ema1'], kwargs['ema2'], kwargs['cross_close']) |
|
elif strategy == "Structure trading": |
|
backtest_results = smc_structure_backtest(data, kwargs['swing_hl']) |
|
else: |
|
raise Exception('Strategy not found') |
|
|
|
|
|
backtest_results = backtest_results.to_frame().transpose() |
|
|
|
backtest_results['stock'] = ticker_symbol |
|
|
|
|
|
|
|
|
|
cols = ['stock', 'Start', 'End', 'Return [%]', 'Equity Final [$]', 'Buy & Hold Return [%]', '# Trades', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]'] |
|
backtest_results = backtest_results[cols] |
|
|
|
df = pd.concat([df, backtest_results]) |
|
|
|
df = df.sort_values(by=['Return [%]'], ascending=False) |
|
|
|
return df |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
|
|
|
|
rt = all_testing("Order Block", '1mo', '15m', swing_hl=20) |
|
rt.to_excel('test/all_testing_1.xlsx', index=False) |
|
print(rt) |