Spaces:
Runtime error
Runtime error
import argparse | |
from functools import partial | |
import mmcv | |
import numpy as np | |
import onnxruntime as rt | |
import torch | |
import torch._C | |
import torch.serialization | |
from mmcv import DictAction | |
from mmcv.onnx import register_extra_symbolics | |
from mmcv.runner import load_checkpoint | |
from torch import nn | |
from mmseg.apis import show_result_pyplot | |
from mmseg.apis.inference import LoadImage | |
from mmseg.datasets.pipelines import Compose | |
from mmseg.models import build_segmentor | |
torch.manual_seed(3) | |
def _convert_batchnorm(module): | |
module_output = module | |
if isinstance(module, torch.nn.SyncBatchNorm): | |
module_output = torch.nn.BatchNorm2d(module.num_features, module.eps, | |
module.momentum, module.affine, | |
module.track_running_stats) | |
if module.affine: | |
module_output.weight.data = module.weight.data.clone().detach() | |
module_output.bias.data = module.bias.data.clone().detach() | |
# keep requires_grad unchanged | |
module_output.weight.requires_grad = module.weight.requires_grad | |
module_output.bias.requires_grad = module.bias.requires_grad | |
module_output.running_mean = module.running_mean | |
module_output.running_var = module.running_var | |
module_output.num_batches_tracked = module.num_batches_tracked | |
for name, child in module.named_children(): | |
module_output.add_module(name, _convert_batchnorm(child)) | |
del module | |
return module_output | |
def _demo_mm_inputs(input_shape, num_classes): | |
"""Create a superset of inputs needed to run test or train batches. | |
Args: | |
input_shape (tuple): | |
input batch dimensions | |
num_classes (int): | |
number of semantic classes | |
""" | |
(N, C, H, W) = input_shape | |
rng = np.random.RandomState(0) | |
imgs = rng.rand(*input_shape) | |
segs = rng.randint( | |
low=0, high=num_classes - 1, size=(N, 1, H, W)).astype(np.uint8) | |
img_metas = [{ | |
'img_shape': (H, W, C), | |
'ori_shape': (H, W, C), | |
'pad_shape': (H, W, C), | |
'filename': '<demo>.png', | |
'scale_factor': 1.0, | |
'flip': False, | |
} for _ in range(N)] | |
mm_inputs = { | |
'imgs': torch.FloatTensor(imgs).requires_grad_(True), | |
'img_metas': img_metas, | |
'gt_semantic_seg': torch.LongTensor(segs) | |
} | |
return mm_inputs | |
def _prepare_input_img(img_path, | |
test_pipeline, | |
shape=None, | |
rescale_shape=None): | |
# build the data pipeline | |
if shape is not None: | |
test_pipeline[1]['img_scale'] = (shape[1], shape[0]) | |
test_pipeline[1]['transforms'][0]['keep_ratio'] = False | |
test_pipeline = [LoadImage()] + test_pipeline[1:] | |
test_pipeline = Compose(test_pipeline) | |
# prepare data | |
data = dict(img=img_path) | |
data = test_pipeline(data) | |
imgs = data['img'] | |
img_metas = [i.data for i in data['img_metas']] | |
if rescale_shape is not None: | |
for img_meta in img_metas: | |
img_meta['ori_shape'] = tuple(rescale_shape) + (3, ) | |
mm_inputs = {'imgs': imgs, 'img_metas': img_metas} | |
return mm_inputs | |
def _update_input_img(img_list, img_meta_list): | |
# update img and its meta list | |
N = img_list[0].size(0) | |
img_meta = img_meta_list[0][0] | |
img_shape = img_meta['img_shape'] | |
ori_shape = img_meta['ori_shape'] | |
pad_shape = img_meta['pad_shape'] | |
new_img_meta_list = [[{ | |
'img_shape': | |
img_shape, | |
'ori_shape': | |
ori_shape, | |
'pad_shape': | |
pad_shape, | |
'filename': | |
img_meta['filename'], | |
'scale_factor': | |
(img_shape[1] / ori_shape[1], img_shape[0] / ori_shape[0]) * 2, | |
'flip': | |
False, | |
} for _ in range(N)]] | |
return img_list, new_img_meta_list | |
def pytorch2onnx(model, | |
mm_inputs, | |
opset_version=11, | |
show=False, | |
output_file='tmp.onnx', | |
verify=False, | |
dynamic_export=False): | |
"""Export Pytorch model to ONNX model and verify the outputs are same | |
between Pytorch and ONNX. | |
Args: | |
model (nn.Module): Pytorch model we want to export. | |
mm_inputs (dict): Contain the input tensors and img_metas information. | |
opset_version (int): The onnx op version. Default: 11. | |
show (bool): Whether print the computation graph. Default: False. | |
output_file (string): The path to where we store the output ONNX model. | |
Default: `tmp.onnx`. | |
verify (bool): Whether compare the outputs between Pytorch and ONNX. | |
Default: False. | |
dynamic_export (bool): Whether to export ONNX with dynamic axis. | |
Default: False. | |
""" | |
model.cpu().eval() | |
test_mode = model.test_cfg.mode | |
if isinstance(model.decode_head, nn.ModuleList): | |
num_classes = model.decode_head[-1].num_classes | |
else: | |
num_classes = model.decode_head.num_classes | |
imgs = mm_inputs.pop('imgs') | |
img_metas = mm_inputs.pop('img_metas') | |
img_list = [img[None, :] for img in imgs] | |
img_meta_list = [[img_meta] for img_meta in img_metas] | |
# update img_meta | |
img_list, img_meta_list = _update_input_img(img_list, img_meta_list) | |
# replace original forward function | |
origin_forward = model.forward | |
model.forward = partial( | |
model.forward, | |
img_metas=img_meta_list, | |
return_loss=False, | |
rescale=True) | |
dynamic_axes = None | |
if dynamic_export: | |
if test_mode == 'slide': | |
dynamic_axes = {'input': {0: 'batch'}, 'output': {1: 'batch'}} | |
else: | |
dynamic_axes = { | |
'input': { | |
0: 'batch', | |
2: 'height', | |
3: 'width' | |
}, | |
'output': { | |
1: 'batch', | |
2: 'height', | |
3: 'width' | |
} | |
} | |
register_extra_symbolics(opset_version) | |
with torch.no_grad(): | |
torch.onnx.export( | |
model, (img_list, ), | |
output_file, | |
input_names=['input'], | |
output_names=['output'], | |
export_params=True, | |
keep_initializers_as_inputs=False, | |
verbose=show, | |
opset_version=opset_version, | |
dynamic_axes=dynamic_axes) | |
print(f'Successfully exported ONNX model: {output_file}') | |
model.forward = origin_forward | |
if verify: | |
# check by onnx | |
import onnx | |
onnx_model = onnx.load(output_file) | |
onnx.checker.check_model(onnx_model) | |
if dynamic_export and test_mode == 'whole': | |
# scale image for dynamic shape test | |
img_list = [ | |
nn.functional.interpolate(_, scale_factor=1.5) | |
for _ in img_list | |
] | |
# concate flip image for batch test | |
flip_img_list = [_.flip(-1) for _ in img_list] | |
img_list = [ | |
torch.cat((ori_img, flip_img), 0) | |
for ori_img, flip_img in zip(img_list, flip_img_list) | |
] | |
# update img_meta | |
img_list, img_meta_list = _update_input_img( | |
img_list, img_meta_list) | |
# check the numerical value | |
# get pytorch output | |
with torch.no_grad(): | |
pytorch_result = model(img_list, img_meta_list, return_loss=False) | |
pytorch_result = np.stack(pytorch_result, 0) | |
# get onnx output | |
input_all = [node.name for node in onnx_model.graph.input] | |
input_initializer = [ | |
node.name for node in onnx_model.graph.initializer | |
] | |
net_feed_input = list(set(input_all) - set(input_initializer)) | |
assert (len(net_feed_input) == 1) | |
sess = rt.InferenceSession(output_file) | |
onnx_result = sess.run( | |
None, {net_feed_input[0]: img_list[0].detach().numpy()})[0][0] | |
# show segmentation results | |
if show: | |
import cv2 | |
import os.path as osp | |
img = img_meta_list[0][0]['filename'] | |
if not osp.exists(img): | |
img = imgs[0][:3, ...].permute(1, 2, 0) * 255 | |
img = img.detach().numpy().astype(np.uint8) | |
ori_shape = img.shape[:2] | |
else: | |
ori_shape = LoadImage()({'img': img})['ori_shape'] | |
# resize onnx_result to ori_shape | |
onnx_result_ = cv2.resize(onnx_result[0].astype(np.uint8), | |
(ori_shape[1], ori_shape[0])) | |
show_result_pyplot( | |
model, | |
img, (onnx_result_, ), | |
palette=model.PALETTE, | |
block=False, | |
title='ONNXRuntime', | |
opacity=0.5) | |
# resize pytorch_result to ori_shape | |
pytorch_result_ = cv2.resize(pytorch_result[0].astype(np.uint8), | |
(ori_shape[1], ori_shape[0])) | |
show_result_pyplot( | |
model, | |
img, (pytorch_result_, ), | |
title='PyTorch', | |
palette=model.PALETTE, | |
opacity=0.5) | |
# compare results | |
np.testing.assert_allclose( | |
pytorch_result.astype(np.float32) / num_classes, | |
onnx_result.astype(np.float32) / num_classes, | |
rtol=1e-5, | |
atol=1e-5, | |
err_msg='The outputs are different between Pytorch and ONNX') | |
print('The outputs are same between Pytorch and ONNX') | |
def parse_args(): | |
parser = argparse.ArgumentParser(description='Convert MMSeg to ONNX') | |
parser.add_argument('config', help='test config file path') | |
parser.add_argument('--checkpoint', help='checkpoint file', default=None) | |
parser.add_argument( | |
'--input-img', type=str, help='Images for input', default=None) | |
parser.add_argument( | |
'--show', | |
action='store_true', | |
help='show onnx graph and segmentation results') | |
parser.add_argument( | |
'--verify', action='store_true', help='verify the onnx model') | |
parser.add_argument('--output-file', type=str, default='tmp.onnx') | |
parser.add_argument('--opset-version', type=int, default=11) | |
parser.add_argument( | |
'--shape', | |
type=int, | |
nargs='+', | |
default=None, | |
help='input image height and width.') | |
parser.add_argument( | |
'--rescale_shape', | |
type=int, | |
nargs='+', | |
default=None, | |
help='output image rescale height and width, work for slide mode.') | |
parser.add_argument( | |
'--cfg-options', | |
nargs='+', | |
action=DictAction, | |
help='Override some settings in the used config, the key-value pair ' | |
'in xxx=yyy format will be merged into config file. If the value to ' | |
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | |
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | |
'Note that the quotation marks are necessary and that no white space ' | |
'is allowed.') | |
parser.add_argument( | |
'--dynamic-export', | |
action='store_true', | |
help='Whether to export onnx with dynamic axis.') | |
args = parser.parse_args() | |
return args | |
if __name__ == '__main__': | |
args = parse_args() | |
cfg = mmcv.Config.fromfile(args.config) | |
if args.cfg_options is not None: | |
cfg.merge_from_dict(args.cfg_options) | |
cfg.model.pretrained = None | |
if args.shape is None: | |
img_scale = cfg.test_pipeline[1]['img_scale'] | |
input_shape = (1, 3, img_scale[1], img_scale[0]) | |
elif len(args.shape) == 1: | |
input_shape = (1, 3, args.shape[0], args.shape[0]) | |
elif len(args.shape) == 2: | |
input_shape = ( | |
1, | |
3, | |
) + tuple(args.shape) | |
else: | |
raise ValueError('invalid input shape') | |
test_mode = cfg.model.test_cfg.mode | |
# build the model and load checkpoint | |
cfg.model.train_cfg = None | |
segmentor = build_segmentor( | |
cfg.model, train_cfg=None, test_cfg=cfg.get('test_cfg')) | |
# convert SyncBN to BN | |
segmentor = _convert_batchnorm(segmentor) | |
if args.checkpoint: | |
checkpoint = load_checkpoint( | |
segmentor, args.checkpoint, map_location='cpu') | |
segmentor.CLASSES = checkpoint['meta']['CLASSES'] | |
segmentor.PALETTE = checkpoint['meta']['PALETTE'] | |
# read input or create dummpy input | |
if args.input_img is not None: | |
preprocess_shape = (input_shape[2], input_shape[3]) | |
rescale_shape = None | |
if args.rescale_shape is not None: | |
rescale_shape = [args.rescale_shape[0], args.rescale_shape[1]] | |
mm_inputs = _prepare_input_img( | |
args.input_img, | |
cfg.data.test.pipeline, | |
shape=preprocess_shape, | |
rescale_shape=rescale_shape) | |
else: | |
if isinstance(segmentor.decode_head, nn.ModuleList): | |
num_classes = segmentor.decode_head[-1].num_classes | |
else: | |
num_classes = segmentor.decode_head.num_classes | |
mm_inputs = _demo_mm_inputs(input_shape, num_classes) | |
# convert model to onnx file | |
pytorch2onnx( | |
segmentor, | |
mm_inputs, | |
opset_version=args.opset_version, | |
show=args.show, | |
output_file=args.output_file, | |
verify=args.verify, | |
dynamic_export=args.dynamic_export) | |