File size: 9,535 Bytes
bd22556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Adaptive Pyramid Context Network for Semantic Segmentation

## Introduction

<!-- [ALGORITHM] -->

```latex
@InProceedings{He_2019_CVPR,
author = {He, Junjun and Deng, Zhongying and Zhou, Lei and Wang, Yali and Qiao, Yu},
title = {Adaptive Pyramid Context Network for Semantic Segmentation},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}
```

## Results and models

### Cityscapes

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) |  mIoU | mIoU(ms+flip) | config                                                                                                                      | download                                                                                                                                                                                                                                                                                                                                                     |
| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| APCNet | R-50-D8  | 512x1024  |   40000 | 7.7      | 3.57           | 78.02 |         79.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes/apcnet_r50-d8_512x1024_40k_cityscapes_20201214_115717-5e88fa33.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_40k_cityscapes/apcnet_r50-d8_512x1024_40k_cityscapes-20201214_115717.log.json)     |
| APCNet | R-101-D8 | 512x1024  |   40000 | 11.2     | 2.15           | 79.08 |         80.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes/apcnet_r101-d8_512x1024_40k_cityscapes_20201214_115716-abc9d111.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_40k_cityscapes/apcnet_r101-d8_512x1024_40k_cityscapes-20201214_115716.log.json) |
| APCNet | R-50-D8  | 769x769   |   40000 | 8.7      | 1.52           | 77.89 |         79.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/apcnet/apcnet_r50-d8_769x769_40k_cityscapes.py)   | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_40k_cityscapes/apcnet_r50-d8_769x769_40k_cityscapes_20201214_115717-2a2628d7.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_40k_cityscapes/apcnet_r50-d8_769x769_40k_cityscapes-20201214_115717.log.json)         |
| APCNet | R-101-D8 | 769x769   |   40000 | 12.7     | 1.03           | 77.96 |         79.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/apcnet/apcnet_r101-d8_769x769_40k_cityscapes.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_40k_cityscapes/apcnet_r101-d8_769x769_40k_cityscapes_20201214_115718-b650de90.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_40k_cityscapes/apcnet_r101-d8_769x769_40k_cityscapes-20201214_115718.log.json)     |
| APCNet | R-50-D8  | 512x1024  |   80000 | -        | -              | 78.96 |         79.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes/apcnet_r50-d8_512x1024_80k_cityscapes_20201214_115716-987f51e3.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x1024_80k_cityscapes/apcnet_r50-d8_512x1024_80k_cityscapes-20201214_115716.log.json)     |
| APCNet | R-101-D8 | 512x1024  |   80000 | -        | -              | 79.64 |         80.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes/apcnet_r101-d8_512x1024_80k_cityscapes_20201214_115705-b1ff208a.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x1024_80k_cityscapes/apcnet_r101-d8_512x1024_80k_cityscapes-20201214_115705.log.json) |
| APCNet | R-50-D8  | 769x769   |   80000 | -        | -              | 78.79 |         80.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/apcnet/apcnet_r50-d8_769x769_80k_cityscapes.py)   | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_80k_cityscapes/apcnet_r50-d8_769x769_80k_cityscapes_20201214_115718-7ea9fa12.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_769x769_80k_cityscapes/apcnet_r50-d8_769x769_80k_cityscapes-20201214_115718.log.json)         |
| APCNet | R-101-D8 | 769x769   |   80000 | -        | -              | 78.45 |         79.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/apcnet/apcnet_r101-d8_769x769_80k_cityscapes.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_80k_cityscapes/apcnet_r101-d8_769x769_80k_cityscapes_20201214_115716-a7fbc2ab.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_769x769_80k_cityscapes/apcnet_r101-d8_769x769_80k_cityscapes-20201214_115716.log.json)     |

### ADE20K

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) |  mIoU | mIoU(ms+flip) | config                                                                                                                  | download                                                                                                                                                                                                                                                                                                                                     |
| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| APCNet | R-50-D8  | 512x512   |   80000 | 10.1     | 19.61          | 42.20 |         43.30 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/apcnet/apcnet_r50-d8_512x512_80k_ade20k.py)   | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_80k_ade20k/apcnet_r50-d8_512x512_80k_ade20k_20201214_115705-a8626293.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_80k_ade20k/apcnet_r50-d8_512x512_80k_ade20k-20201214_115705.log.json)         |
| APCNet | R-101-D8 | 512x512   |   80000 | 13.6     | 13.10          | 45.54 |         46.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/apcnet/apcnet_r101-d8_512x512_80k_ade20k.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_80k_ade20k/apcnet_r101-d8_512x512_80k_ade20k_20201214_115704-c656c3fb.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_80k_ade20k/apcnet_r101-d8_512x512_80k_ade20k-20201214_115704.log.json)     |
| APCNet | R-50-D8  | 512x512   |  160000 | -        | -              | 43.40 |         43.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/apcnet/apcnet_r50-d8_512x512_160k_ade20k.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_160k_ade20k/apcnet_r50-d8_512x512_160k_ade20k_20201214_115706-25fb92c2.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r50-d8_512x512_160k_ade20k/apcnet_r50-d8_512x512_160k_ade20k-20201214_115706.log.json)     |
| APCNet | R-101-D8 | 512x512   |  160000 | -        | -              | 45.41 |         46.63 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/apcnet/apcnet_r101-d8_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_160k_ade20k/apcnet_r101-d8_512x512_160k_ade20k_20201214_115705-73f9a8d7.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/apcnet/apcnet_r101-d8_512x512_160k_ade20k/apcnet_r101-d8_512x512_160k_ade20k-20201214_115705.log.json) |