Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import torch | |
from model import create_effnetb2_model | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
############################################## | |
# 1. Setup class names | |
############################################## | |
class_names = ['art_nouveau', | |
'baroque', | |
'expressionism', | |
'impressionism', | |
'post_impressionism', | |
'realism', | |
'renaissance', | |
'romanticism', | |
'surrealism', | |
'ukiyo_e'] | |
############################################## | |
# 2. Model and transforms preparation | |
############################################## | |
# 2.1 Create EfficientNet_B2 model | |
EfficientNetB2_model, EfficientNetB2_transforms = create_effnetb2_model(num_classes=10,is_TrivialAugmentWide=False) | |
# 2.2 Load saved weights (from our trained PyTorch model) | |
EfficientNetB2_model.load_state_dict( | |
torch.load( | |
f="EfficientNet_B2_FT.pth", | |
map_location=torch.device("cpu"), # load to CPU because we will use the free HuggingFace Space CPUs. | |
) | |
) | |
############################################## | |
# 3. Create prediction function | |
############################################## | |
def prediction(img) -> Tuple[Dict, float]: | |
"""returns prediction probabilities and prediction time. | |
""" | |
# Start the timer | |
start_time = timer() | |
# Transform the target image and add a batch dimension | |
img = EfficientNetB2_transforms(img).unsqueeze(0) | |
# Put model into evaluation mode and turn on inference mode | |
EfficientNetB2_model.eval() | |
with torch.inference_mode(): | |
# Get prediction probabilities | |
pred_probs = torch.softmax(EfficientNetB2_model(img), dim=1) | |
# Create a prediction label and prediction probability dictionary for each prediction class. | |
# This is the required format for Gradio's output parameter. | |
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} | |
# Calculate the prediction time | |
pred_time = round(timer() - start_time, 5) | |
# Return the prediction dictionary and prediction time | |
return pred_labels_and_probs, pred_time | |
############################################## | |
# 4. Gradio app | |
############################################## | |
# 4.1 Create title, description and article strings | |
title = "Artwork Classification π¨" | |
description = "An EfficientNetB2 computer vision model to classify artworks." | |
article = "Created with PyTorch." | |
# 4.2 Create examples list from "examples/" directory | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
# 4.3 Create the Gradio demo | |
demo = gr.Interface(fn=prediction, # mapping function from input to output | |
inputs=gr.Image(type="pil"), | |
outputs=[gr.Label(num_top_classes=3, label="Predictions"), # 1st output: pred_probs | |
gr.Number(label="Prediction time (s)")], # 2nd output: pred_time | |
# Create examples list from "examples/" directory | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article) | |
# 4.4 Launch the Gradio demo! | |
demo.launch() |