|
import spaces |
|
import gradio as gr |
|
|
|
|
|
''' |
|
|
|
''' |
|
from gradio_utils import clear_old_files,read_file |
|
from face_mesh_spinning import process_face_mesh_spinning |
|
from mp_estimate import mean_std_label,estimate_horizontal,estimate_vertical,estimate_horizontal_points,estimate_vertical_points |
|
|
|
def process_images(image,draw_type,center_scaleup,animation_direction, |
|
z_multiply,inner_eyes,inner_mouth, |
|
progress=gr.Progress(track_tqdm=True)): |
|
|
|
clear_old_files() |
|
|
|
if image==None: |
|
raise gr.Error("need image") |
|
|
|
result,face_landmarker_result,rotated_points = process_face_mesh_spinning(image,draw_type,center_scaleup,animation_direction,z_multiply,inner_eyes,inner_mouth) |
|
|
|
return result |
|
|
|
|
|
css=""" |
|
#col-left { |
|
margin: 0 auto; |
|
max-width: 640px; |
|
} |
|
#col-right { |
|
margin: 0 auto; |
|
max-width: 640px; |
|
} |
|
.grid-container { |
|
display: flex; |
|
align-items: center; |
|
justify-content: center; |
|
gap:10px |
|
} |
|
|
|
.image { |
|
width: 128px; |
|
height: 128px; |
|
object-fit: cover; |
|
} |
|
|
|
.text { |
|
font-size: 16px; |
|
} |
|
""" |
|
|
|
from glibvision.cv2_utils import pil_to_bgr_image,copy_image |
|
from mp_utils import extract_landmark,get_pixel_cordinate |
|
import numpy as np |
|
|
|
def extract_landmark_double_check(numpy_image,double_check=True,center_index=4,extract_matrix=True): |
|
mp_image,face_landmarker_result = extract_landmark(numpy_image,"face_landmarker.task",0,0,extract_matrix) |
|
h,w = numpy_image.shape[:2] |
|
second_mp_image,first_landmarker_result = None,None |
|
numpy_view = mp_image.numpy_view() |
|
if double_check: |
|
root_cordinate = get_pixel_cordinate(face_landmarker_result.face_landmarks,center_index,w,h) |
|
diff_center_x = int(w/2 - root_cordinate[0]) |
|
diff_center_y = int(h/2 - root_cordinate[1]) |
|
base = np.zeros_like(numpy_view) |
|
copy_image(base,numpy_view,diff_center_x,diff_center_y) |
|
first_landmarker_result = face_landmarker_result |
|
second_mp_image,face_landmarker_result = extract_landmark(base,"face_landmarker.task",0,0,extract_matrix) |
|
return mp_image,face_landmarker_result,second_mp_image,first_landmarker_result |
|
|
|
|
|
|
|
from scipy.spatial.transform import Rotation as R |
|
def calculate_angle(image,double_check,ignore_x,order): |
|
cv2_base_image = pil_to_bgr_image(image) |
|
mp_image,face_landmarker_result,_,_ = extract_landmark_double_check(cv2_base_image,double_check) |
|
if len(face_landmarker_result.facial_transformation_matrixes)>0: |
|
transformation_matrix=face_landmarker_result.facial_transformation_matrixes[0] |
|
|
|
rotation_matrix, translation_vector = transformation_matrix[:3, :3],transformation_matrix[:3, 3] |
|
|
|
r = R.from_matrix(rotation_matrix) |
|
euler_angles = r.as_euler(order, degrees=True) |
|
label = f"Mediapipe Euler yxz: {euler_angles}" |
|
if ignore_x: |
|
euler_angles[1]=0 |
|
|
|
result = [label,0,0,0] |
|
for i,ch in enumerate(order.lower()): |
|
if ch == "x": |
|
result[1] = -euler_angles[i] |
|
elif ch == "y": |
|
result[2] = euler_angles[i] |
|
elif ch == "z": |
|
result[3] = euler_angles[i] |
|
|
|
return result |
|
return label,-euler_angles[1],euler_angles[0],euler_angles[2] |
|
return "",0,0,0 |
|
|
|
def change_animation(animation): |
|
if animation: |
|
return gr.Column(visible=True),gr.Column(visible=False) |
|
else: |
|
return gr.Column(visible=False),gr.Column(visible=True) |
|
with gr.Blocks(css=css, elem_id="demo-container") as demo: |
|
with gr.Column(): |
|
gr.HTML(read_file("demo_header.html")) |
|
gr.HTML(read_file("demo_tools.html")) |
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.Image(height=800,sources=['upload','clipboard'],image_mode='RGB',elem_id="image_upload", type="pil", label="Image") |
|
|
|
with gr.Row(elem_id="prompt-container", equal_height=False): |
|
with gr.Row(): |
|
btn = gr.Button("Rotate Mesh", elem_id="run_button",variant="primary") |
|
|
|
|
|
|
|
with gr.Accordion(label="Advanced Settings", open=True): |
|
|
|
draw_type = gr.Radio(label="Draw type",choices=["Dot","Line","Line+Fill","Image"],value="Line",info="making image animation,take over 60 sec and limited frame only") |
|
with gr.Row( equal_height=True): |
|
inner_eyes=gr.Checkbox(label="Inner Eyes",value=True) |
|
inner_mouth=gr.Checkbox(label="Inner Mouth",value=True) |
|
with gr.Row( equal_height=True): |
|
|
|
center_scaleup = gr.Checkbox(label="ScaleUp/Fit",value=True,info="center is nose-tip,Zoomed face usually make small") |
|
z_multiply = gr.Slider(info="Nose height", |
|
label="Depth-Multiply", |
|
minimum=0.1, |
|
maximum=1.5, |
|
step=0.01, |
|
value=0.8) |
|
animation_column = gr.Column(visible=True) |
|
with animation_column: |
|
with gr.Row( equal_height=True): |
|
animation_direction = gr.Radio(label="Animation Direction",choices=["X","Y","Z"],value="Y") |
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Column(): |
|
result_image = gr.Image(height=760,label="Result", elem_id="output-animation",image_mode='RGBA') |
|
|
|
|
|
|
|
|
|
|
|
btn.click(fn=process_images, inputs=[image,draw_type,center_scaleup,animation_direction, |
|
z_multiply,inner_eyes,inner_mouth, |
|
],outputs=[result_image, |
|
|
|
] ,api_name='infer') |
|
|
|
example_images = [ |
|
["examples/02316230.jpg","examples/02316230.webp"], |
|
["examples/00003245_00.jpg","examples/00003245_00.webp"], |
|
["examples/00827009.jpg","examples/00827009.webp"], |
|
["examples/00002062.jpg","examples/00002062.webp"], |
|
["examples/00824008.jpg","examples/00824008.webp"], |
|
["examples/00825000.jpg","examples/00825000.webp"], |
|
["examples/00826007.jpg","examples/00826007.webp"], |
|
["examples/00824006.jpg","examples/00824006.webp"], |
|
|
|
["examples/00002200.jpg","examples/00002200.webp"], |
|
["examples/00005259.jpg","examples/00005259.webp"], |
|
["examples/00018022.jpg","examples/00018022.webp"], |
|
["examples/img-above.jpg","examples/img-above.webp"], |
|
["examples/00100265.jpg","examples/00100265.webp"], |
|
["examples/00039259.jpg","examples/00039259.webp"], |
|
|
|
] |
|
example1=gr.Examples( |
|
examples = example_images,label="Image", |
|
inputs=[image,result_image],examples_per_page=8 |
|
) |
|
|
|
gr.HTML(read_file("demo_footer.html")) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|