Spaces:
Sleeping
Sleeping
from functools import cached_property | |
from pathlib import Path | |
from typing import Optional, ClassVar | |
from threading import Lock | |
import numpy as np | |
from loguru import logger | |
from numpy.typing import NDArray | |
from sentence_transformers.SentenceTransformer import SentenceTransformer | |
from transformers import AutoTokenizer | |
from rag_demo.settings import settings | |
class SingletonMeta(type): | |
""" | |
This is a thread-safe implementation of Singleton. | |
""" | |
_instances: ClassVar = {} | |
_lock: Lock = Lock() | |
""" | |
We now have a lock object that will be used to synchronize threads during | |
first access to the Singleton. | |
""" | |
def __call__(cls, *args, **kwargs): | |
""" | |
Possible changes to the value of the `__init__` argument do not affect | |
the returned instance. | |
""" | |
# Now, imagine that the program has just been launched. Since there's no | |
# Singleton instance yet, multiple threads can simultaneously pass the | |
# previous conditional and reach this point almost at the same time. The | |
# first of them will acquire lock and will proceed further, while the | |
# rest will wait here. | |
with cls._lock: | |
# The first thread to acquire the lock, reaches this conditional, | |
# goes inside and creates the Singleton instance. Once it leaves the | |
# lock block, a thread that might have been waiting for the lock | |
# release may then enter this section. But since the Singleton field | |
# is already initialized, the thread won't create a new object. | |
if cls not in cls._instances: | |
instance = super().__call__(*args, **kwargs) | |
cls._instances[cls] = instance | |
return cls._instances[cls] | |
class EmbeddingModelSingleton(metaclass=SingletonMeta): | |
""" | |
A singleton class that provides a pre-trained transformer model for generating embeddings of input text. | |
""" | |
def __init__( | |
self, | |
model_id: str = settings.TEXT_EMBEDDING_MODEL_ID, | |
device: str = settings.RAG_MODEL_DEVICE, | |
cache_dir: Optional[Path] = None, | |
) -> None: | |
self._model_id = model_id | |
self._device = device | |
self._model = SentenceTransformer( | |
self._model_id, | |
device=self._device, | |
cache_folder=str(cache_dir) if cache_dir else None, | |
) | |
self._model.eval() | |
def model_id(self) -> str: | |
""" | |
Returns the identifier of the pre-trained transformer model to use. | |
Returns: | |
str: The identifier of the pre-trained transformer model to use. | |
""" | |
return self._model_id | |
def embedding_size(self) -> int: | |
""" | |
Returns the size of the embeddings generated by the pre-trained transformer model. | |
Returns: | |
int: The size of the embeddings generated by the pre-trained transformer model. | |
""" | |
dummy_embedding = self._model.encode("") | |
return dummy_embedding.shape[0] | |
def max_input_length(self) -> int: | |
""" | |
Returns the maximum length of input text to tokenize. | |
Returns: | |
int: The maximum length of input text to tokenize. | |
""" | |
return self._model.max_seq_length | |
def tokenizer(self) -> AutoTokenizer: | |
""" | |
Returns the tokenizer used to tokenize input text. | |
Returns: | |
AutoTokenizer: The tokenizer used to tokenize input text. | |
""" | |
return self._model.tokenizer | |
def __call__( | |
self, input_text: str | list[str], to_list: bool = True | |
) -> NDArray[np.float32] | list[float] | list[list[float]]: | |
""" | |
Generates embeddings for the input text using the pre-trained transformer model. | |
Args: | |
input_text (str): The input text to generate embeddings for. | |
to_list (bool): Whether to return the embeddings as a list or numpy array. Defaults to True. | |
Returns: | |
Union[np.ndarray, list]: The embeddings generated for the input text. | |
""" | |
try: | |
embeddings = self._model.encode(input_text) | |
except Exception: | |
logger.error( | |
f"Error generating embeddings for {self._model_id=} and {input_text=}" | |
) | |
return [] if to_list else np.array([]) | |
if to_list: | |
embeddings = embeddings.tolist() | |
return embeddings | |