import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load your custom model and tokenizer MODEL_NAME = "Qwen/Qwen2.5-1.5B" # Replace with your model's Hugging Face repo ID or local path tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) # Ensure the model is on the CPU model.to("cpu") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Prepare the chat history messages = [{"role": "system", "content": system_message}] for user_msg, assistant_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) # Add the latest user message messages.append({"role": "user", "content": message}) # Format the input for the model input_text = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages]) # Generate a response inputs = tokenizer(input_text, return_tensors="pt").to("cpu") # Move inputs to CPU outputs = model.generate( inputs.input_ids, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, ) # Decode the response response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Extract only the assistant's response # Split the response by "assistant:" and take the last part assistant_response = response.split("assistant:")[-1].strip() # Remove any repeated history from the response # This ensures the response doesn't include the entire conversation if "user:" in assistant_response: assistant_response = assistant_response.split("user:")[0].strip() yield assistant_response # Create the Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) # Launch the app if __name__ == "__main__": demo.launch()