|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
|
|
MODEL_NAME = "Qwen/Qwen2.5-1.5B" |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) |
|
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) |
|
|
|
|
|
model.to("cpu") |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for user_msg, assistant_msg in history: |
|
if user_msg: |
|
messages.append({"role": "user", "content": user_msg}) |
|
if assistant_msg: |
|
messages.append({"role": "assistant", "content": assistant_msg}) |
|
|
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
input_text = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages]) |
|
|
|
|
|
inputs = tokenizer(input_text, return_tensors="pt").to("cpu") |
|
outputs = model.generate( |
|
inputs.input_ids, |
|
max_new_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
do_sample=True, |
|
) |
|
|
|
|
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
|
|
assistant_response = response.split("assistant:")[-1].strip() |
|
|
|
|
|
|
|
if "user:" in assistant_response: |
|
assistant_response = assistant_response.split("user:")[0].strip() |
|
|
|
yield assistant_response |
|
|
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |