Spaces:
Sleeping
Sleeping
# import gdown | |
# import torch | |
# # https://drive.google.com/drive/folders/17G-ejd4scK1DYko5k0ssXZjEy7P-ClI6 | |
# import streamlit as st | |
# import gdown | |
# import torch | |
# from transformers import pipeline | |
# # Function to download the model from Google Drive | |
# def download_file_from_drive(file_id, output_path): | |
# url = f'https://drive.google.com/uc?id={file_id}' | |
# gdown.download(url, output_path, quiet=False) | |
# # Replace 'YOUR_FILE_ID' with the actual file ID of your model | |
# file_id = '1A2B3C4D5E6F7G8H9I0J' | |
import streamlit as st | |
import requests | |
import torch | |
from transformers import pipeline | |
from transformers import BartTokenizer, BartForConditionalGeneration | |
# Replace with your Hugging Face model repository path | |
model_repo_path = 'AbdurRehman313/BART_samsum' | |
# Load the model and tokenizer | |
model = BartForConditionalGeneration.from_pretrained(model_repo_path) | |
tokenizer = BartTokenizer.from_pretrained(model_repo_path) | |
# Initialize the summarization pipeline | |
summarizer = pipeline('summarization', model=model,tokenizer=tokenizer) | |
# Streamlit app layout | |
st.title("Text Summarization App") | |
# User input | |
text_input = st.text_area("Enter text to summarize", height=300) | |
# Summarize the text | |
if st.button("Summarize"): | |
if text_input: | |
with st.spinner("Generating summary..."): | |
try: | |
summary = summarizer(text_input, max_length=150, min_length=30, do_sample=False) | |
st.subheader("Summary") | |
st.write(summary[0]['summary_text']) | |
except Exception as e: | |
st.error(f"Error during summarization: {e}") | |
else: | |
st.warning("Please enter some text to summarize.") |