File size: 8,992 Bytes
e3a594e
 
 
9c93632
e3a594e
 
 
 
 
9c93632
e3a594e
 
 
 
 
 
9c93632
e3a594e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch
from transformers import SpeechT5ForTextToSpeech, SpeechT5Processor, SpeechT5HifiGan
import soundfile as sf
import gradio as gr
import scipy.io.wavfile as wav
import numpy as np
import wave
from datasets import load_dataset, Audio, config
from IPython.display import Audio

# Load the TTS model from the Hugging Face Hub
checkpoint = "Abdullah-Habib/urdu_speech_tt"  # Replace with your actual model name
processor = SpeechT5Processor.from_pretrained(checkpoint)
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
tokenizer = processor.tokenizer
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")


# Buckwalter to Unicode mapping
buck2uni = {
            u"\u0627":"a",
            u"\u0627":"a",
            u"\u0675":"a",
            u"\u0673":"a",
            u"\u0630":"a",
            u"\u0622":"aa",
            u"\u0628":"b",
            u"\u067E":"p",
            u"\u062A":"t",
            u"\u0637":"t",
            u"\u0679":"t",
            u"\u062C":"j",
            u"\u0633":"s",
            u"\u062B":"s",
            u"\u0635":"s",
            u"\u0686":"ch",
            u"\u062D":"h",
            u"\u0647":"h",
            u"\u0629":"h",
            u"\u06DF":"h",
            u"\u062E":"kh",
            u"\u062F":"d",
            u"\u0688":"d",
            u"\u0630":"z",
            u"\u0632":"z",
            u"\u0636":"z",
            u"\u0638":"z",
            u"\u068E":"z",
            u"\u0631":"r",
            u"\u0691":"r",
            u"\u0634":"sh",
            u"\u063A":"gh",
            u"\u0641":"f",
            u"\u06A9":"k",
            u"\u0642":"k",
            u"\u06AF":"g",
            u"\u0644":"l",
            u"\u0645":"m",
            u"\u0646":"n",
            u"\u06BA":"n",
            u"\u0648":"o",
            u"\u0649":"y",
            u"\u0626":"y",
            u"\u06CC":"y",
            u"\u06D2":"e",
            u"\u06C1":"h",
            u"\u064A":"e"  ,
            u"\u06C2":"ah"  ,
            u"\u06BE":"h"  ,
            u"\u0639":"a"  ,
            u"\u0643":"k" ,
            u"\u0621":"a",
            u"\u0624":"o",
            u"\u060C":"" #seperator ulta comma

def transString(string, reverse=0):
    """Given a Unicode string, transliterate into Buckwalter. To go from
    Buckwalter back to Unicode, set reverse=1"""
    for k, v in buck2uni.items():
        if not reverse:
            string = string.replace(k, v)
        else:
            string = string.replace(v, k)
    return string


def generate_audio(text):
    # Convert input text to Roman Urdu
    roman_urdu = transString(text)

    # Tokenize the input text
    inputs = processor(text=roman_urdu, return_tensors="pt", type = "numpy")

    # Generate audio from the SpeechT5 model


    
    # speaker_embeddings = torch.tensor(np.load("speaker_embeddings.npy"))


   speaker_embeddings= torch.tensor([[-0.0917, -0.0461,  0.0347,  0.0341,  0.0197, -0.0438, -0.0377, -0.0212,
          0.0361,  0.0220, -0.0676, -0.0731,  0.0827,  0.0132,  0.0187,  0.0577,
         -0.0026,  0.0618,  0.0088,  0.0159,  0.0344,  0.0243, -0.0164, -0.0430,
         -0.0556, -0.0044, -0.0413, -0.0003,  0.0310,  0.0369, -0.0034,  0.0424,
          0.0474,  0.0102,  0.0392, -0.0611,  0.0405,  0.0652, -0.0386, -0.0638,
          0.0255, -0.0411,  0.0398,  0.0490,  0.0297, -0.1218, -0.0206,  0.0146,
         -0.0649,  0.0550,  0.0177,  0.0407,  0.0017, -0.0113, -0.0990, -0.0015,
          0.0158,  0.0481,  0.0286,  0.0300,  0.0346, -0.0104, -0.0142, -0.0005,
          0.0264,  0.0412,  0.0227, -0.0389, -0.0489, -0.0750,  0.0238,  0.0101,
          0.0171,  0.0141,  0.0224,  0.0344,  0.0402,  0.0336, -0.0641, -0.0818,
         -0.0731, -0.0470, -0.0512, -0.0602, -0.0344, -0.0442, -0.0541,  0.0097,
          0.0198,  0.0482,  0.0323, -0.0885,  0.0210, -0.0798,  0.0417, -0.0436,
          0.0402,  0.0256, -0.0641, -0.0668, -0.0023, -0.0706, -0.0928,  0.0121,
          0.0355, -0.0376,  0.0522,  0.0482,  0.0200,  0.0290, -0.0698, -0.0232,
          0.0878,  0.0044,  0.0559,  0.0581, -0.0718,  0.0095, -0.0538,  0.0125,
          0.0023, -0.0562,  0.0424,  0.0261, -0.0498,  0.0255, -0.0840,  0.0331,
          0.0406,  0.0162, -0.0522,  0.0218,  0.0323,  0.0359,  0.0128, -0.0891,
         -0.0569,  0.0031, -0.0694, -0.0102,  0.0118,  0.0033,  0.0127,  0.0589,
         -0.0783,  0.0179,  0.0200, -0.0371,  0.0325, -0.1033,  0.0483, -0.0343,
         -0.0714,  0.0102,  0.0665,  0.0278,  0.0285, -0.0653, -0.0834,  0.0196,
          0.0399,  0.0085,  0.0246, -0.0400,  0.0215,  0.0083,  0.0302,  0.0204,
          0.0360,  0.0309, -0.0306, -0.0828,  0.0142, -0.0614, -0.0103,  0.0372,
         -0.0456,  0.0291,  0.0565, -0.0271,  0.0518, -0.0671,  0.0012, -0.0048,
         -0.0565, -0.0092,  0.0336,  0.0476, -0.0351, -0.0698,  0.0487,  0.0313,
         -0.0491,  0.0401,  0.0246,  0.0178,  0.0405,  0.0012,  0.0311, -0.0041,
          0.0367,  0.0330, -0.0609,  0.0099, -0.0097,  0.0173,  0.0494, -0.0305,
          0.0272, -0.0349,  0.0025, -0.0697, -0.0414,  0.0604, -0.0707,  0.0420,
          0.0380, -0.0731,  0.0546,  0.0339, -0.0758,  0.0365, -0.0712, -0.0140,
          0.0365,  0.0477,  0.0796,  0.0572,  0.0212,  0.0098,  0.0133,  0.0261,
          0.0329, -0.0269,  0.0437, -0.0359,  0.0296,  0.0180, -0.0008,  0.0668,
         -0.0448,  0.0269, -0.0734,  0.0194, -0.0494,  0.0432,  0.0449,  0.0442,
          0.0389,  0.0530,  0.0420,  0.0021,  0.0084, -0.0820, -0.0081,  0.0326,
          0.0265,  0.0536, -0.0714,  0.0188,  0.0298, -0.0737,  0.0110,  0.0340,
          0.0016,  0.0262,  0.0179,  0.0109,  0.0426, -0.0538,  0.0649,  0.0160,
          0.0146, -0.0419, -0.0851,  0.0138,  0.0399,  0.0445, -0.0849, -0.0425,
          0.0293,  0.0477,  0.0108, -0.0941, -0.0386,  0.0600,  0.0089,  0.0557,
         -0.0892,  0.0026,  0.0192,  0.0136, -0.0207, -0.0023,  0.0163,  0.0263,
         -0.0112,  0.0245,  0.0411,  0.0285,  0.0267,  0.0297,  0.0213, -0.0577,
          0.0169,  0.0592,  0.0227,  0.0290,  0.0074,  0.0197,  0.0282,  0.0368,
          0.0064,  0.0092, -0.0896, -0.0693, -0.0295,  0.0316, -0.0674,  0.0645,
         -0.0655,  0.0355, -0.0389,  0.0134,  0.0299, -0.0534,  0.0537,  0.0900,
         -0.0770, -0.0666, -0.0600, -0.0019,  0.0276,  0.0590, -0.0705,  0.0222,
          0.0517, -0.0089,  0.0063, -0.0270,  0.0185, -0.0626, -0.0065,  0.0187,
         -0.0670,  0.0216,  0.0356,  0.0384, -0.0268, -0.0628, -0.0443, -0.0195,
         -0.0495,  0.1405,  0.0274, -0.0455, -0.0068,  0.0686, -0.0756, -0.0073,
         -0.0981,  0.0025,  0.0383,  0.0157,  0.0651,  0.0252, -0.0665,  0.0054,
          0.0223,  0.0509,  0.0101,  0.0454, -0.0527,  0.0252, -0.0157, -0.0022,
          0.0526,  0.0224,  0.0494,  0.0293, -0.0808, -0.1220,  0.0196,  0.0135,
          0.0303, -0.0467,  0.0411, -0.0639,  0.0358,  0.0499,  0.0425,  0.0169,
         -0.0579,  0.0388,  0.0414, -0.0101,  0.0490, -0.0773,  0.0478, -0.0238,
         -0.0142, -0.0508,  0.0018, -0.0085,  0.0198,  0.0126,  0.0133, -0.0554,
         -0.0583, -0.0699, -0.0167,  0.0131,  0.0288, -0.0132,  0.0343, -0.0476,
         -0.0039, -0.0825, -0.1180, -0.0570, -0.0590,  0.0233,  0.0500, -0.0328,
         -0.0426,  0.0241,  0.0441,  0.0372,  0.0488, -0.0366, -0.0233, -0.0118,
         -0.0256,  0.0254,  0.0041,  0.0119,  0.0423,  0.0178, -0.0245, -0.0769,
          0.0056,  0.0428,  0.0341, -0.0009, -0.0197,  0.0395,  0.0247,  0.0090,
          0.0098, -0.0083,  0.0346,  0.0411,  0.0416,  0.0413,  0.0312,  0.0054,
          0.0390, -0.0571, -0.0403,  0.0441, -0.0132,  0.0117,  0.0467,  0.0516,
         -0.0639,  0.0296,  0.0337, -0.0557,  0.0110,  0.0277, -0.0026,  0.0347,
          0.0301,  0.0056, -0.0572, -0.0663,  0.0124, -0.0065,  0.0222,  0.0441,
         -0.0570, -0.0519,  0.0132,  0.0323,  0.0401,  0.0357, -0.0555,  0.0310,
          0.0028, -0.0102, -0.0598,  0.0153, -0.0438,  0.0268, -0.0097,  0.0388,
         -0.0330, -0.0277, -0.0581, -0.0389,  0.0099,  0.0371, -0.0455,  0.0553,
          0.0753, -0.0154, -0.0385,  0.0359,  0.0403,  0.0464,  0.0499, -0.0365]])



    speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)

    return speech

def text_to_speech(text):
    # Generate audio
    audio_output = generate_audio(text)

    output_path = "output.wav"
    sf.write(output_path, audio_output.numpy(), 16000, "PCM_16")

    return output_path


examples = [
    ['اگر رشتے داری ہے تو پیسے کی'],
    ['مجھے کھانے سے لطف نہیں آیا۔']
]


interface = gr.Interface(fn=text_to_speech, inputs="text", outputs="audio", verbose = True, title="Urdu TTS", 
                         description = "A simple Urdu Text to Speech Application. It is not by any means perfect and will not work for all text. You can sometimes expect it to generate random noise on an input of your choice. Right now it works successfully on very basic urdu text, such the ones in the example.", examples = examples)
interface.launch()