Spaces:
Runtime error
Runtime error
File size: 8,992 Bytes
e3a594e 9c93632 e3a594e 9c93632 e3a594e 9c93632 e3a594e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import torch
from transformers import SpeechT5ForTextToSpeech, SpeechT5Processor, SpeechT5HifiGan
import soundfile as sf
import gradio as gr
import scipy.io.wavfile as wav
import numpy as np
import wave
from datasets import load_dataset, Audio, config
from IPython.display import Audio
# Load the TTS model from the Hugging Face Hub
checkpoint = "Abdullah-Habib/urdu_speech_tt" # Replace with your actual model name
processor = SpeechT5Processor.from_pretrained(checkpoint)
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
tokenizer = processor.tokenizer
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
# Buckwalter to Unicode mapping
buck2uni = {
u"\u0627":"a",
u"\u0627":"a",
u"\u0675":"a",
u"\u0673":"a",
u"\u0630":"a",
u"\u0622":"aa",
u"\u0628":"b",
u"\u067E":"p",
u"\u062A":"t",
u"\u0637":"t",
u"\u0679":"t",
u"\u062C":"j",
u"\u0633":"s",
u"\u062B":"s",
u"\u0635":"s",
u"\u0686":"ch",
u"\u062D":"h",
u"\u0647":"h",
u"\u0629":"h",
u"\u06DF":"h",
u"\u062E":"kh",
u"\u062F":"d",
u"\u0688":"d",
u"\u0630":"z",
u"\u0632":"z",
u"\u0636":"z",
u"\u0638":"z",
u"\u068E":"z",
u"\u0631":"r",
u"\u0691":"r",
u"\u0634":"sh",
u"\u063A":"gh",
u"\u0641":"f",
u"\u06A9":"k",
u"\u0642":"k",
u"\u06AF":"g",
u"\u0644":"l",
u"\u0645":"m",
u"\u0646":"n",
u"\u06BA":"n",
u"\u0648":"o",
u"\u0649":"y",
u"\u0626":"y",
u"\u06CC":"y",
u"\u06D2":"e",
u"\u06C1":"h",
u"\u064A":"e" ,
u"\u06C2":"ah" ,
u"\u06BE":"h" ,
u"\u0639":"a" ,
u"\u0643":"k" ,
u"\u0621":"a",
u"\u0624":"o",
u"\u060C":"" #seperator ulta comma
def transString(string, reverse=0):
"""Given a Unicode string, transliterate into Buckwalter. To go from
Buckwalter back to Unicode, set reverse=1"""
for k, v in buck2uni.items():
if not reverse:
string = string.replace(k, v)
else:
string = string.replace(v, k)
return string
def generate_audio(text):
# Convert input text to Roman Urdu
roman_urdu = transString(text)
# Tokenize the input text
inputs = processor(text=roman_urdu, return_tensors="pt", type = "numpy")
# Generate audio from the SpeechT5 model
# speaker_embeddings = torch.tensor(np.load("speaker_embeddings.npy"))
speaker_embeddings= torch.tensor([[-0.0917, -0.0461, 0.0347, 0.0341, 0.0197, -0.0438, -0.0377, -0.0212,
0.0361, 0.0220, -0.0676, -0.0731, 0.0827, 0.0132, 0.0187, 0.0577,
-0.0026, 0.0618, 0.0088, 0.0159, 0.0344, 0.0243, -0.0164, -0.0430,
-0.0556, -0.0044, -0.0413, -0.0003, 0.0310, 0.0369, -0.0034, 0.0424,
0.0474, 0.0102, 0.0392, -0.0611, 0.0405, 0.0652, -0.0386, -0.0638,
0.0255, -0.0411, 0.0398, 0.0490, 0.0297, -0.1218, -0.0206, 0.0146,
-0.0649, 0.0550, 0.0177, 0.0407, 0.0017, -0.0113, -0.0990, -0.0015,
0.0158, 0.0481, 0.0286, 0.0300, 0.0346, -0.0104, -0.0142, -0.0005,
0.0264, 0.0412, 0.0227, -0.0389, -0.0489, -0.0750, 0.0238, 0.0101,
0.0171, 0.0141, 0.0224, 0.0344, 0.0402, 0.0336, -0.0641, -0.0818,
-0.0731, -0.0470, -0.0512, -0.0602, -0.0344, -0.0442, -0.0541, 0.0097,
0.0198, 0.0482, 0.0323, -0.0885, 0.0210, -0.0798, 0.0417, -0.0436,
0.0402, 0.0256, -0.0641, -0.0668, -0.0023, -0.0706, -0.0928, 0.0121,
0.0355, -0.0376, 0.0522, 0.0482, 0.0200, 0.0290, -0.0698, -0.0232,
0.0878, 0.0044, 0.0559, 0.0581, -0.0718, 0.0095, -0.0538, 0.0125,
0.0023, -0.0562, 0.0424, 0.0261, -0.0498, 0.0255, -0.0840, 0.0331,
0.0406, 0.0162, -0.0522, 0.0218, 0.0323, 0.0359, 0.0128, -0.0891,
-0.0569, 0.0031, -0.0694, -0.0102, 0.0118, 0.0033, 0.0127, 0.0589,
-0.0783, 0.0179, 0.0200, -0.0371, 0.0325, -0.1033, 0.0483, -0.0343,
-0.0714, 0.0102, 0.0665, 0.0278, 0.0285, -0.0653, -0.0834, 0.0196,
0.0399, 0.0085, 0.0246, -0.0400, 0.0215, 0.0083, 0.0302, 0.0204,
0.0360, 0.0309, -0.0306, -0.0828, 0.0142, -0.0614, -0.0103, 0.0372,
-0.0456, 0.0291, 0.0565, -0.0271, 0.0518, -0.0671, 0.0012, -0.0048,
-0.0565, -0.0092, 0.0336, 0.0476, -0.0351, -0.0698, 0.0487, 0.0313,
-0.0491, 0.0401, 0.0246, 0.0178, 0.0405, 0.0012, 0.0311, -0.0041,
0.0367, 0.0330, -0.0609, 0.0099, -0.0097, 0.0173, 0.0494, -0.0305,
0.0272, -0.0349, 0.0025, -0.0697, -0.0414, 0.0604, -0.0707, 0.0420,
0.0380, -0.0731, 0.0546, 0.0339, -0.0758, 0.0365, -0.0712, -0.0140,
0.0365, 0.0477, 0.0796, 0.0572, 0.0212, 0.0098, 0.0133, 0.0261,
0.0329, -0.0269, 0.0437, -0.0359, 0.0296, 0.0180, -0.0008, 0.0668,
-0.0448, 0.0269, -0.0734, 0.0194, -0.0494, 0.0432, 0.0449, 0.0442,
0.0389, 0.0530, 0.0420, 0.0021, 0.0084, -0.0820, -0.0081, 0.0326,
0.0265, 0.0536, -0.0714, 0.0188, 0.0298, -0.0737, 0.0110, 0.0340,
0.0016, 0.0262, 0.0179, 0.0109, 0.0426, -0.0538, 0.0649, 0.0160,
0.0146, -0.0419, -0.0851, 0.0138, 0.0399, 0.0445, -0.0849, -0.0425,
0.0293, 0.0477, 0.0108, -0.0941, -0.0386, 0.0600, 0.0089, 0.0557,
-0.0892, 0.0026, 0.0192, 0.0136, -0.0207, -0.0023, 0.0163, 0.0263,
-0.0112, 0.0245, 0.0411, 0.0285, 0.0267, 0.0297, 0.0213, -0.0577,
0.0169, 0.0592, 0.0227, 0.0290, 0.0074, 0.0197, 0.0282, 0.0368,
0.0064, 0.0092, -0.0896, -0.0693, -0.0295, 0.0316, -0.0674, 0.0645,
-0.0655, 0.0355, -0.0389, 0.0134, 0.0299, -0.0534, 0.0537, 0.0900,
-0.0770, -0.0666, -0.0600, -0.0019, 0.0276, 0.0590, -0.0705, 0.0222,
0.0517, -0.0089, 0.0063, -0.0270, 0.0185, -0.0626, -0.0065, 0.0187,
-0.0670, 0.0216, 0.0356, 0.0384, -0.0268, -0.0628, -0.0443, -0.0195,
-0.0495, 0.1405, 0.0274, -0.0455, -0.0068, 0.0686, -0.0756, -0.0073,
-0.0981, 0.0025, 0.0383, 0.0157, 0.0651, 0.0252, -0.0665, 0.0054,
0.0223, 0.0509, 0.0101, 0.0454, -0.0527, 0.0252, -0.0157, -0.0022,
0.0526, 0.0224, 0.0494, 0.0293, -0.0808, -0.1220, 0.0196, 0.0135,
0.0303, -0.0467, 0.0411, -0.0639, 0.0358, 0.0499, 0.0425, 0.0169,
-0.0579, 0.0388, 0.0414, -0.0101, 0.0490, -0.0773, 0.0478, -0.0238,
-0.0142, -0.0508, 0.0018, -0.0085, 0.0198, 0.0126, 0.0133, -0.0554,
-0.0583, -0.0699, -0.0167, 0.0131, 0.0288, -0.0132, 0.0343, -0.0476,
-0.0039, -0.0825, -0.1180, -0.0570, -0.0590, 0.0233, 0.0500, -0.0328,
-0.0426, 0.0241, 0.0441, 0.0372, 0.0488, -0.0366, -0.0233, -0.0118,
-0.0256, 0.0254, 0.0041, 0.0119, 0.0423, 0.0178, -0.0245, -0.0769,
0.0056, 0.0428, 0.0341, -0.0009, -0.0197, 0.0395, 0.0247, 0.0090,
0.0098, -0.0083, 0.0346, 0.0411, 0.0416, 0.0413, 0.0312, 0.0054,
0.0390, -0.0571, -0.0403, 0.0441, -0.0132, 0.0117, 0.0467, 0.0516,
-0.0639, 0.0296, 0.0337, -0.0557, 0.0110, 0.0277, -0.0026, 0.0347,
0.0301, 0.0056, -0.0572, -0.0663, 0.0124, -0.0065, 0.0222, 0.0441,
-0.0570, -0.0519, 0.0132, 0.0323, 0.0401, 0.0357, -0.0555, 0.0310,
0.0028, -0.0102, -0.0598, 0.0153, -0.0438, 0.0268, -0.0097, 0.0388,
-0.0330, -0.0277, -0.0581, -0.0389, 0.0099, 0.0371, -0.0455, 0.0553,
0.0753, -0.0154, -0.0385, 0.0359, 0.0403, 0.0464, 0.0499, -0.0365]])
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
return speech
def text_to_speech(text):
# Generate audio
audio_output = generate_audio(text)
output_path = "output.wav"
sf.write(output_path, audio_output.numpy(), 16000, "PCM_16")
return output_path
examples = [
['اگر رشتے داری ہے تو پیسے کی'],
['مجھے کھانے سے لطف نہیں آیا۔']
]
interface = gr.Interface(fn=text_to_speech, inputs="text", outputs="audio", verbose = True, title="Urdu TTS",
description = "A simple Urdu Text to Speech Application. It is not by any means perfect and will not work for all text. You can sometimes expect it to generate random noise on an input of your choice. Right now it works successfully on very basic urdu text, such the ones in the example.", examples = examples)
interface.launch() |