Spaces:
Runtime error
Runtime error
artelabsuper
commited on
Commit
·
b4eade4
1
Parent(s):
8c753d1
demo with model
Browse files- .gitattributes +1 -0
- .gitignore +3 -0
- README.md +5 -0
- app.py +39 -5
- best_model.ckpt +3 -0
- models/mit.py +437 -0
- models/model.py +112 -0
- requirements.txt +2 -0
- test.py +36 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
best_model.ckpt filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
venv
|
2 |
+
__pycache__
|
3 |
+
test.png
|
README.md
CHANGED
@@ -10,3 +10,8 @@ pinned: false
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
13 |
+
|
14 |
+
```
|
15 |
+
pip install -r requirements.txt
|
16 |
+
python3.8 app.py
|
17 |
+
```
|
app.py
CHANGED
@@ -1,20 +1,54 @@
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
-
import
|
4 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# load model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def predict(input_image):
|
9 |
pil_image = Image.fromarray(input_image.astype('uint8'), 'RGB')
|
10 |
# transform image to torch and do preprocessing
|
11 |
-
|
12 |
# model predict
|
13 |
-
|
|
|
14 |
# transform torch to image
|
15 |
-
|
16 |
# return correct image
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
iface = gr.Interface(
|
20 |
fn=predict,
|
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
+
from collections import OrderedDict
|
4 |
import torch
|
5 |
+
from models.model import GLPDepth
|
6 |
+
from PIL import Image
|
7 |
+
from torchvision import transforms
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
from matplotlib.backends.backend_agg import FigureCanvasAgg
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
|
15 |
# load model
|
16 |
+
DEVICE='cpu'
|
17 |
+
def load_mde_model(path):
|
18 |
+
model = GLPDepth(max_depth=700.0, is_train=False).to(DEVICE)
|
19 |
+
model_weight = torch.load(path, map_location=torch.device('cpu'))
|
20 |
+
model_weight = model_weight['model_state_dict']
|
21 |
+
if 'module' in next(iter(model_weight.items()))[0]:
|
22 |
+
model_weight = OrderedDict((k[7:], v) for k, v in model_weight.items())
|
23 |
+
model.load_state_dict(model_weight)
|
24 |
+
model.eval()
|
25 |
+
return model
|
26 |
+
|
27 |
+
model = load_mde_model('best_model.ckpt')
|
28 |
+
preprocess = transforms.Compose([
|
29 |
+
transforms.Resize((512, 512)),
|
30 |
+
transforms.ToTensor()
|
31 |
+
])
|
32 |
|
33 |
def predict(input_image):
|
34 |
pil_image = Image.fromarray(input_image.astype('uint8'), 'RGB')
|
35 |
# transform image to torch and do preprocessing
|
36 |
+
torch_img = preprocess(pil_image).to(DEVICE).unsqueeze(0)
|
37 |
# model predict
|
38 |
+
with torch.no_grad():
|
39 |
+
output_patch = model(torch_img)
|
40 |
# transform torch to image
|
41 |
+
predicted_image = output_patch['pred_d'].squeeze().cpu().detach().numpy()
|
42 |
# return correct image
|
43 |
+
fig, ax = plt.subplots()
|
44 |
+
im = ax.imshow(predicted_image, cmap='jet', vmin=0, vmax=np.max(predicted_image))
|
45 |
+
plt.colorbar(im, ax=ax)
|
46 |
+
|
47 |
+
fig.canvas.draw()
|
48 |
+
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
|
49 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
50 |
+
|
51 |
+
return data
|
52 |
|
53 |
iface = gr.Interface(
|
54 |
fn=predict,
|
best_model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ccef15e6acd9e19231d0093d365d4a14c68454a83ac49ba8b292ce5df9ca4d23
|
3 |
+
size 735542869
|
models/mit.py
ADDED
@@ -0,0 +1,437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ---------------------------------------------------------------
|
2 |
+
# Copyright (c) 2021, NVIDIA Corporation. All rights reserved.
|
3 |
+
#
|
4 |
+
# This work is licensed under the NVIDIA Source Code License
|
5 |
+
# ---------------------------------------------------------------
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from functools import partial
|
10 |
+
|
11 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
12 |
+
from timm.models.registry import register_model
|
13 |
+
from timm.models.vision_transformer import _cfg
|
14 |
+
# from mmseg.models.builder import BACKBONES
|
15 |
+
from mmcv.runner import load_checkpoint
|
16 |
+
import math
|
17 |
+
|
18 |
+
|
19 |
+
class Mlp(nn.Module):
|
20 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
21 |
+
super().__init__()
|
22 |
+
out_features = out_features or in_features
|
23 |
+
hidden_features = hidden_features or in_features
|
24 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
25 |
+
self.dwconv = DWConv(hidden_features)
|
26 |
+
self.act = act_layer()
|
27 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
28 |
+
self.drop = nn.Dropout(drop)
|
29 |
+
|
30 |
+
self.apply(self._init_weights)
|
31 |
+
|
32 |
+
def _init_weights(self, m):
|
33 |
+
if isinstance(m, nn.Linear):
|
34 |
+
trunc_normal_(m.weight, std=.02)
|
35 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
36 |
+
nn.init.constant_(m.bias, 0)
|
37 |
+
elif isinstance(m, nn.LayerNorm):
|
38 |
+
nn.init.constant_(m.bias, 0)
|
39 |
+
nn.init.constant_(m.weight, 1.0)
|
40 |
+
elif isinstance(m, nn.Conv2d):
|
41 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
42 |
+
fan_out //= m.groups
|
43 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
44 |
+
if m.bias is not None:
|
45 |
+
m.bias.data.zero_()
|
46 |
+
|
47 |
+
def forward(self, x, H, W):
|
48 |
+
x = self.fc1(x)
|
49 |
+
x = self.dwconv(x, H, W)
|
50 |
+
x = self.act(x)
|
51 |
+
x = self.drop(x)
|
52 |
+
x = self.fc2(x)
|
53 |
+
x = self.drop(x)
|
54 |
+
return x
|
55 |
+
|
56 |
+
|
57 |
+
class Attention(nn.Module):
|
58 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
|
59 |
+
super().__init__()
|
60 |
+
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
|
61 |
+
|
62 |
+
self.dim = dim
|
63 |
+
self.num_heads = num_heads
|
64 |
+
head_dim = dim // num_heads
|
65 |
+
self.scale = qk_scale or head_dim ** -0.5
|
66 |
+
|
67 |
+
self.q = nn.Linear(dim, dim, bias=qkv_bias)
|
68 |
+
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
|
69 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
70 |
+
self.proj = nn.Linear(dim, dim)
|
71 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
72 |
+
|
73 |
+
self.sr_ratio = sr_ratio
|
74 |
+
if sr_ratio > 1:
|
75 |
+
self.sr = nn.Conv2d(
|
76 |
+
dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
|
77 |
+
self.norm = nn.LayerNorm(dim)
|
78 |
+
|
79 |
+
self.apply(self._init_weights)
|
80 |
+
|
81 |
+
def _init_weights(self, m):
|
82 |
+
if isinstance(m, nn.Linear):
|
83 |
+
trunc_normal_(m.weight, std=.02)
|
84 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
85 |
+
nn.init.constant_(m.bias, 0)
|
86 |
+
elif isinstance(m, nn.LayerNorm):
|
87 |
+
nn.init.constant_(m.bias, 0)
|
88 |
+
nn.init.constant_(m.weight, 1.0)
|
89 |
+
elif isinstance(m, nn.Conv2d):
|
90 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
91 |
+
fan_out //= m.groups
|
92 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
93 |
+
if m.bias is not None:
|
94 |
+
m.bias.data.zero_()
|
95 |
+
|
96 |
+
def forward(self, x, H, W):
|
97 |
+
B, N, C = x.shape
|
98 |
+
q = self.q(x).reshape(B, N, self.num_heads, C //
|
99 |
+
self.num_heads).permute(0, 2, 1, 3)
|
100 |
+
|
101 |
+
if self.sr_ratio > 1:
|
102 |
+
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
|
103 |
+
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
|
104 |
+
x_ = self.norm(x_)
|
105 |
+
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads,
|
106 |
+
C // self.num_heads).permute(2, 0, 3, 1, 4)
|
107 |
+
else:
|
108 |
+
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C //
|
109 |
+
self.num_heads).permute(2, 0, 3, 1, 4)
|
110 |
+
k, v = kv[0], kv[1]
|
111 |
+
|
112 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
113 |
+
attn = attn.softmax(dim=-1)
|
114 |
+
attn = self.attn_drop(attn)
|
115 |
+
|
116 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
117 |
+
x = self.proj(x)
|
118 |
+
x = self.proj_drop(x)
|
119 |
+
|
120 |
+
return x
|
121 |
+
|
122 |
+
|
123 |
+
class Block(nn.Module):
|
124 |
+
|
125 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
126 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
|
127 |
+
super().__init__()
|
128 |
+
self.norm1 = norm_layer(dim)
|
129 |
+
self.attn = Attention(
|
130 |
+
dim,
|
131 |
+
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
132 |
+
attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
|
133 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
134 |
+
self.drop_path = DropPath(
|
135 |
+
drop_path) if drop_path > 0. else nn.Identity()
|
136 |
+
self.norm2 = norm_layer(dim)
|
137 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
138 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
|
139 |
+
act_layer=act_layer, drop=drop)
|
140 |
+
|
141 |
+
self.apply(self._init_weights)
|
142 |
+
|
143 |
+
def _init_weights(self, m):
|
144 |
+
if isinstance(m, nn.Linear):
|
145 |
+
trunc_normal_(m.weight, std=.02)
|
146 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
147 |
+
nn.init.constant_(m.bias, 0)
|
148 |
+
elif isinstance(m, nn.LayerNorm):
|
149 |
+
nn.init.constant_(m.bias, 0)
|
150 |
+
nn.init.constant_(m.weight, 1.0)
|
151 |
+
elif isinstance(m, nn.Conv2d):
|
152 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
153 |
+
fan_out //= m.groups
|
154 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
155 |
+
if m.bias is not None:
|
156 |
+
m.bias.data.zero_()
|
157 |
+
|
158 |
+
def forward(self, x, H, W):
|
159 |
+
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
|
160 |
+
x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
|
161 |
+
|
162 |
+
return x
|
163 |
+
|
164 |
+
|
165 |
+
class OverlapPatchEmbed(nn.Module):
|
166 |
+
""" Image to Patch Embedding
|
167 |
+
"""
|
168 |
+
|
169 |
+
def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768):
|
170 |
+
super().__init__()
|
171 |
+
img_size = to_2tuple(img_size)
|
172 |
+
patch_size = to_2tuple(patch_size)
|
173 |
+
|
174 |
+
self.img_size = img_size
|
175 |
+
self.patch_size = patch_size
|
176 |
+
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
|
177 |
+
self.num_patches = self.H * self.W
|
178 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,
|
179 |
+
padding=(patch_size[0] // 2, patch_size[1] // 2))
|
180 |
+
self.norm = nn.LayerNorm(embed_dim)
|
181 |
+
|
182 |
+
self.apply(self._init_weights)
|
183 |
+
|
184 |
+
def _init_weights(self, m):
|
185 |
+
if isinstance(m, nn.Linear):
|
186 |
+
trunc_normal_(m.weight, std=.02)
|
187 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
188 |
+
nn.init.constant_(m.bias, 0)
|
189 |
+
elif isinstance(m, nn.LayerNorm):
|
190 |
+
nn.init.constant_(m.bias, 0)
|
191 |
+
nn.init.constant_(m.weight, 1.0)
|
192 |
+
elif isinstance(m, nn.Conv2d):
|
193 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
194 |
+
fan_out //= m.groups
|
195 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
196 |
+
if m.bias is not None:
|
197 |
+
m.bias.data.zero_()
|
198 |
+
|
199 |
+
def forward(self, x):
|
200 |
+
x = self.proj(x)
|
201 |
+
_, _, H, W = x.shape
|
202 |
+
x = x.flatten(2).transpose(1, 2)
|
203 |
+
x = self.norm(x)
|
204 |
+
|
205 |
+
return x, H, W
|
206 |
+
|
207 |
+
|
208 |
+
class MixVisionTransformer(nn.Module):
|
209 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
|
210 |
+
num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
|
211 |
+
attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
|
212 |
+
depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]):
|
213 |
+
super().__init__()
|
214 |
+
self.num_classes = num_classes
|
215 |
+
self.depths = depths
|
216 |
+
|
217 |
+
# patch_embed
|
218 |
+
self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_chans=in_chans,
|
219 |
+
embed_dim=embed_dims[0])
|
220 |
+
self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_chans=embed_dims[0],
|
221 |
+
embed_dim=embed_dims[1])
|
222 |
+
self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_chans=embed_dims[1],
|
223 |
+
embed_dim=embed_dims[2])
|
224 |
+
self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_chans=embed_dims[2],
|
225 |
+
embed_dim=embed_dims[3])
|
226 |
+
|
227 |
+
# transformer encoder
|
228 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate,
|
229 |
+
sum(depths))] # stochastic depth decay rule
|
230 |
+
cur = 0
|
231 |
+
self.block1 = nn.ModuleList([Block(
|
232 |
+
dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
233 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur +
|
234 |
+
i], norm_layer=norm_layer,
|
235 |
+
sr_ratio=sr_ratios[0])
|
236 |
+
for i in range(depths[0])])
|
237 |
+
self.norm1 = norm_layer(embed_dims[0])
|
238 |
+
|
239 |
+
cur += depths[0]
|
240 |
+
self.block2 = nn.ModuleList([Block(
|
241 |
+
dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
242 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur +
|
243 |
+
i], norm_layer=norm_layer,
|
244 |
+
sr_ratio=sr_ratios[1])
|
245 |
+
for i in range(depths[1])])
|
246 |
+
self.norm2 = norm_layer(embed_dims[1])
|
247 |
+
|
248 |
+
cur += depths[1]
|
249 |
+
self.block3 = nn.ModuleList([Block(
|
250 |
+
dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
251 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur +
|
252 |
+
i], norm_layer=norm_layer,
|
253 |
+
sr_ratio=sr_ratios[2])
|
254 |
+
for i in range(depths[2])])
|
255 |
+
self.norm3 = norm_layer(embed_dims[2])
|
256 |
+
|
257 |
+
cur += depths[2]
|
258 |
+
self.block4 = nn.ModuleList([Block(
|
259 |
+
dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
260 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur +
|
261 |
+
i], norm_layer=norm_layer,
|
262 |
+
sr_ratio=sr_ratios[3])
|
263 |
+
for i in range(depths[3])])
|
264 |
+
self.norm4 = norm_layer(embed_dims[3])
|
265 |
+
|
266 |
+
# classification head
|
267 |
+
# self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
|
268 |
+
|
269 |
+
self.apply(self._init_weights)
|
270 |
+
|
271 |
+
def _init_weights(self, m):
|
272 |
+
if isinstance(m, nn.Linear):
|
273 |
+
trunc_normal_(m.weight, std=.02)
|
274 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
275 |
+
nn.init.constant_(m.bias, 0)
|
276 |
+
elif isinstance(m, nn.LayerNorm):
|
277 |
+
nn.init.constant_(m.bias, 0)
|
278 |
+
nn.init.constant_(m.weight, 1.0)
|
279 |
+
elif isinstance(m, nn.Conv2d):
|
280 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
281 |
+
fan_out //= m.groups
|
282 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
283 |
+
if m.bias is not None:
|
284 |
+
m.bias.data.zero_()
|
285 |
+
|
286 |
+
def init_weights(self, pretrained=None):
|
287 |
+
if isinstance(pretrained, str):
|
288 |
+
load_checkpoint(self, pretrained, map_location='cpu',
|
289 |
+
strict=False)
|
290 |
+
|
291 |
+
def reset_drop_path(self, drop_path_rate):
|
292 |
+
dpr = [x.item() for x in torch.linspace(
|
293 |
+
0, drop_path_rate, sum(self.depths))]
|
294 |
+
cur = 0
|
295 |
+
for i in range(self.depths[0]):
|
296 |
+
self.block1[i].drop_path.drop_prob = dpr[cur + i]
|
297 |
+
|
298 |
+
cur += self.depths[0]
|
299 |
+
for i in range(self.depths[1]):
|
300 |
+
self.block2[i].drop_path.drop_prob = dpr[cur + i]
|
301 |
+
|
302 |
+
cur += self.depths[1]
|
303 |
+
for i in range(self.depths[2]):
|
304 |
+
self.block3[i].drop_path.drop_prob = dpr[cur + i]
|
305 |
+
|
306 |
+
cur += self.depths[2]
|
307 |
+
for i in range(self.depths[3]):
|
308 |
+
self.block4[i].drop_path.drop_prob = dpr[cur + i]
|
309 |
+
|
310 |
+
def freeze_patch_emb(self):
|
311 |
+
self.patch_embed1.requires_grad = False
|
312 |
+
|
313 |
+
@torch.jit.ignore
|
314 |
+
def no_weight_decay(self):
|
315 |
+
# has pos_embed may be better
|
316 |
+
return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'}
|
317 |
+
|
318 |
+
def get_classifier(self):
|
319 |
+
return self.head
|
320 |
+
|
321 |
+
def reset_classifier(self, num_classes, global_pool=''):
|
322 |
+
self.num_classes = num_classes
|
323 |
+
self.head = nn.Linear(
|
324 |
+
self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
325 |
+
|
326 |
+
def forward_features(self, x):
|
327 |
+
B = x.shape[0]
|
328 |
+
outs = []
|
329 |
+
|
330 |
+
# stage 1
|
331 |
+
x, H, W = self.patch_embed1(x)
|
332 |
+
for i, blk in enumerate(self.block1):
|
333 |
+
x = blk(x, H, W)
|
334 |
+
x = self.norm1(x)
|
335 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
336 |
+
outs.append(x)
|
337 |
+
|
338 |
+
# stage 2
|
339 |
+
x, H, W = self.patch_embed2(x)
|
340 |
+
for i, blk in enumerate(self.block2):
|
341 |
+
x = blk(x, H, W)
|
342 |
+
x = self.norm2(x)
|
343 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
344 |
+
outs.append(x)
|
345 |
+
|
346 |
+
# stage 3
|
347 |
+
x, H, W = self.patch_embed3(x)
|
348 |
+
for i, blk in enumerate(self.block3):
|
349 |
+
x = blk(x, H, W)
|
350 |
+
x = self.norm3(x)
|
351 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
352 |
+
outs.append(x)
|
353 |
+
|
354 |
+
# stage 4
|
355 |
+
x, H, W = self.patch_embed4(x)
|
356 |
+
for i, blk in enumerate(self.block4):
|
357 |
+
x = blk(x, H, W)
|
358 |
+
x = self.norm4(x)
|
359 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
360 |
+
outs.append(x)
|
361 |
+
|
362 |
+
return outs
|
363 |
+
|
364 |
+
def forward(self, x):
|
365 |
+
x = self.forward_features(x)
|
366 |
+
# x = self.head(x)
|
367 |
+
|
368 |
+
return x
|
369 |
+
|
370 |
+
|
371 |
+
class DWConv(nn.Module):
|
372 |
+
def __init__(self, dim=768):
|
373 |
+
super(DWConv, self).__init__()
|
374 |
+
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
|
375 |
+
|
376 |
+
def forward(self, x, H, W):
|
377 |
+
B, N, C = x.shape
|
378 |
+
x = x.transpose(1, 2).view(B, C, H, W)
|
379 |
+
x = self.dwconv(x)
|
380 |
+
x = x.flatten(2).transpose(1, 2)
|
381 |
+
|
382 |
+
return x
|
383 |
+
|
384 |
+
|
385 |
+
class mit_b0(MixVisionTransformer):
|
386 |
+
def __init__(self, **kwargs):
|
387 |
+
super(mit_b0, self).__init__(
|
388 |
+
patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
|
389 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
|
390 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
391 |
+
|
392 |
+
|
393 |
+
class mit_b1(MixVisionTransformer):
|
394 |
+
def __init__(self, **kwargs):
|
395 |
+
super(mit_b1, self).__init__(
|
396 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
|
397 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
|
398 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
399 |
+
|
400 |
+
|
401 |
+
class mit_b2(MixVisionTransformer):
|
402 |
+
def __init__(self, **kwargs):
|
403 |
+
super(mit_b2, self).__init__(
|
404 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
|
405 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
|
406 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
407 |
+
|
408 |
+
|
409 |
+
class mit_b3(MixVisionTransformer):
|
410 |
+
def __init__(self, **kwargs):
|
411 |
+
super(mit_b3, self).__init__(
|
412 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
|
413 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
|
414 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
415 |
+
|
416 |
+
|
417 |
+
class mit_b4(MixVisionTransformer):
|
418 |
+
def __init__(self, **kwargs):
|
419 |
+
super(mit_b4, self).__init__(
|
420 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
|
421 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
|
422 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
423 |
+
|
424 |
+
|
425 |
+
class mit_b5(MixVisionTransformer):
|
426 |
+
def __init__(self, **kwargs):
|
427 |
+
super(mit_b5, self).__init__(
|
428 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
|
429 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
|
430 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
431 |
+
|
432 |
+
|
433 |
+
if __name__ == "__main__":
|
434 |
+
import pdb
|
435 |
+
|
436 |
+
model = mit_b5()
|
437 |
+
pdb.set_trace()
|
models/model.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from mmcv.runner import load_checkpoint
|
5 |
+
from models.mit import mit_b4
|
6 |
+
|
7 |
+
|
8 |
+
class GLPDepth(nn.Module):
|
9 |
+
def __init__(self, max_depth=10.0, is_train=False):
|
10 |
+
super().__init__()
|
11 |
+
self.max_depth = max_depth
|
12 |
+
|
13 |
+
self.encoder = mit_b4()
|
14 |
+
if is_train:
|
15 |
+
ckpt_path = './models/weights/mit_b4.pth'
|
16 |
+
try:
|
17 |
+
load_checkpoint(self.encoder, ckpt_path, logger=None)
|
18 |
+
except:
|
19 |
+
import gdown
|
20 |
+
print("Download pre-trained encoder weights...")
|
21 |
+
id = '1BUtU42moYrOFbsMCE-LTTkUE-mrWnfG2'
|
22 |
+
url = 'https://drive.google.com/uc?id=' + id
|
23 |
+
output = './models/weights/mit_b4.pth'
|
24 |
+
gdown.download(url, output, quiet=False)
|
25 |
+
|
26 |
+
channels_in = [512, 320, 128]
|
27 |
+
channels_out = 64
|
28 |
+
|
29 |
+
self.decoder = Decoder(channels_in, channels_out)
|
30 |
+
|
31 |
+
self.last_layer_depth = nn.Sequential(
|
32 |
+
nn.Conv2d(channels_out, channels_out, kernel_size=3, stride=1, padding=1),
|
33 |
+
nn.ReLU(inplace=False),
|
34 |
+
nn.Conv2d(channels_out, 1, kernel_size=3, stride=1, padding=1))
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
conv1, conv2, conv3, conv4 = self.encoder(x)
|
38 |
+
out = self.decoder(conv1, conv2, conv3, conv4)
|
39 |
+
out_depth = self.last_layer_depth(out)
|
40 |
+
out_depth = torch.sigmoid(out_depth) * self.max_depth
|
41 |
+
|
42 |
+
return {'pred_d': out_depth}
|
43 |
+
|
44 |
+
|
45 |
+
class Decoder(nn.Module):
|
46 |
+
def __init__(self, in_channels, out_channels):
|
47 |
+
super().__init__()
|
48 |
+
|
49 |
+
self.bot_conv = nn.Conv2d(
|
50 |
+
in_channels=in_channels[0], out_channels=out_channels, kernel_size=1)
|
51 |
+
self.skip_conv1 = nn.Conv2d(
|
52 |
+
in_channels=in_channels[1], out_channels=out_channels, kernel_size=1)
|
53 |
+
self.skip_conv2 = nn.Conv2d(
|
54 |
+
in_channels=in_channels[2], out_channels=out_channels, kernel_size=1)
|
55 |
+
|
56 |
+
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
|
57 |
+
|
58 |
+
self.fusion1 = SelectiveFeatureFusion(out_channels)
|
59 |
+
self.fusion2 = SelectiveFeatureFusion(out_channels)
|
60 |
+
self.fusion3 = SelectiveFeatureFusion(out_channels)
|
61 |
+
|
62 |
+
def forward(self, x_1, x_2, x_3, x_4):
|
63 |
+
x_4_ = self.bot_conv(x_4)
|
64 |
+
out = self.up(x_4_)
|
65 |
+
|
66 |
+
x_3_ = self.skip_conv1(x_3)
|
67 |
+
out = self.fusion1(x_3_, out)
|
68 |
+
out = self.up(out)
|
69 |
+
|
70 |
+
x_2_ = self.skip_conv2(x_2)
|
71 |
+
out = self.fusion2(x_2_, out)
|
72 |
+
out = self.up(out)
|
73 |
+
|
74 |
+
out = self.fusion3(x_1, out)
|
75 |
+
out = self.up(out)
|
76 |
+
out = self.up(out)
|
77 |
+
|
78 |
+
return out
|
79 |
+
|
80 |
+
|
81 |
+
class SelectiveFeatureFusion(nn.Module):
|
82 |
+
def __init__(self, in_channel=64):
|
83 |
+
super().__init__()
|
84 |
+
|
85 |
+
self.conv1 = nn.Sequential(
|
86 |
+
nn.Conv2d(in_channels=int(in_channel * 2),
|
87 |
+
out_channels=in_channel, kernel_size=3, stride=1, padding=1),
|
88 |
+
nn.BatchNorm2d(in_channel),
|
89 |
+
nn.ReLU())
|
90 |
+
|
91 |
+
self.conv2 = nn.Sequential(
|
92 |
+
nn.Conv2d(in_channels=in_channel,
|
93 |
+
out_channels=int(in_channel / 2), kernel_size=3, stride=1, padding=1),
|
94 |
+
nn.BatchNorm2d(int(in_channel / 2)),
|
95 |
+
nn.ReLU())
|
96 |
+
|
97 |
+
self.conv3 = nn.Conv2d(in_channels=int(in_channel / 2),
|
98 |
+
out_channels=2, kernel_size=3, stride=1, padding=1)
|
99 |
+
|
100 |
+
self.sigmoid = nn.Sigmoid()
|
101 |
+
|
102 |
+
def forward(self, x_local, x_global):
|
103 |
+
x = torch.cat((x_local, x_global), dim=1)
|
104 |
+
x = self.conv1(x)
|
105 |
+
x = self.conv2(x)
|
106 |
+
x = self.conv3(x)
|
107 |
+
attn = self.sigmoid(x)
|
108 |
+
|
109 |
+
out = x_local * attn[:, 0, :, :].unsqueeze(1) + \
|
110 |
+
x_global * attn[:, 1, :, :].unsqueeze(1)
|
111 |
+
|
112 |
+
return out
|
requirements.txt
CHANGED
@@ -1,3 +1,5 @@
|
|
1 |
gradio
|
2 |
torch
|
3 |
torchvision
|
|
|
|
|
|
1 |
gradio
|
2 |
torch
|
3 |
torchvision
|
4 |
+
mmcv==1.4.3
|
5 |
+
timm==0.5.4
|
test.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
import torch
|
3 |
+
from models.model import GLPDepth
|
4 |
+
from PIL import Image
|
5 |
+
from torchvision import transforms
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
DEVICE='cpu'
|
10 |
+
|
11 |
+
def load_mde_model(path):
|
12 |
+
model = GLPDepth(max_depth=700.0, is_train=False).to(DEVICE)
|
13 |
+
model_weight = torch.load(path, map_location=torch.device('cpu'))
|
14 |
+
model_weight = model_weight['model_state_dict']
|
15 |
+
if 'module' in next(iter(model_weight.items()))[0]:
|
16 |
+
model_weight = OrderedDict((k[7:], v) for k, v in model_weight.items())
|
17 |
+
model.load_state_dict(model_weight)
|
18 |
+
model.eval()
|
19 |
+
return model
|
20 |
+
|
21 |
+
model = load_mde_model('best_model.ckpt')
|
22 |
+
preprocess = transforms.Compose([
|
23 |
+
transforms.Resize((512, 512)),
|
24 |
+
transforms.ToTensor()
|
25 |
+
])
|
26 |
+
|
27 |
+
input_img = Image.open('demo_imgs/fake.jpg')
|
28 |
+
torch_img = preprocess(input_img).to(DEVICE).unsqueeze(0)
|
29 |
+
with torch.no_grad():
|
30 |
+
output_patch = model(torch_img)
|
31 |
+
output_patch = output_patch['pred_d'].squeeze().cpu().detach().numpy()
|
32 |
+
print(output_patch.shape)
|
33 |
+
|
34 |
+
plt.imshow(output_patch, cmap='jet', vmin=0, vmax=np.max(output_patch))
|
35 |
+
plt.colorbar()
|
36 |
+
plt.savefig('test.png')
|