File size: 12,130 Bytes
501c69f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
```python

import requests

import json



# Build model mapping

original_models = [

    # OpenAI Models

    "gpt-3.5-turbo",

    "gpt-3.5-turbo-202201",

    "gpt-4o",

    "gpt-4o-2024-05-13",

    "o1-preview",



    # Claude Models

    "claude",

    "claude-3-5-sonnet",

    "claude-sonnet-3.5",

    "claude-3-5-sonnet-20240620",



    # Meta/LLaMA Models

    "@cf/meta/llama-2-7b-chat-fp16",

    "@cf/meta/llama-2-7b-chat-int8",

    "@cf/meta/llama-3-8b-instruct",

    "@cf/meta/llama-3.1-8b-instruct",

    "@cf/meta-llama/llama-2-7b-chat-hf-lora",

    "llama-3.1-405b",

    "llama-3.1-70b",

    "llama-3.1-8b",

    "meta-llama/Llama-2-7b-chat-hf",

    "meta-llama/Llama-3.1-70B-Instruct",

    "meta-llama/Llama-3.1-8B-Instruct",

    "meta-llama/Llama-3.2-11B-Vision-Instruct",

    "meta-llama/Llama-3.2-1B-Instruct",

    "meta-llama/Llama-3.2-3B-Instruct",

    "meta-llama/Llama-3.2-90B-Vision-Instruct",

    "meta-llama/Llama-Guard-3-8B",

    "meta-llama/Meta-Llama-3-70B-Instruct",

    "meta-llama/Meta-Llama-3-8B-Instruct",

    "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",

    "meta-llama/Meta-Llama-3.1-8B-Instruct",

    "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",



    # Mistral Models

    "mistral",

    "mistral-large",

    "@cf/mistral/mistral-7b-instruct-v0.1",

    "@cf/mistral/mistral-7b-instruct-v0.2-lora",

    "@hf/mistralai/mistral-7b-instruct-v0.2",

    "mistralai/Mistral-7B-Instruct-v0.2",

    "mistralai/Mistral-7B-Instruct-v0.3",

    "mistralai/Mixtral-8x22B-Instruct-v0.1",

    "mistralai/Mixtral-8x7B-Instruct-v0.1",



    # Qwen Models

    "@cf/qwen/qwen1.5-0.5b-chat",

    "@cf/qwen/qwen1.5-1.8b-chat",

    "@cf/qwen/qwen1.5-7b-chat-awq",

    "@cf/qwen/qwen1.5-14b-chat-awq",

    "Qwen/Qwen2.5-3B-Instruct",

    "Qwen/Qwen2.5-72B-Instruct",

    "Qwen/Qwen2.5-Coder-32B-Instruct",



    # Google/Gemini Models

    "@cf/google/gemma-2b-it-lora",

    "@cf/google/gemma-7b-it-lora",

    "@hf/google/gemma-7b-it",

    "google/gemma-1.1-2b-it",

    "google/gemma-1.1-7b-it",

    "gemini-pro",

    "gemini-1.5-pro",

    "gemini-1.5-pro-latest",

    "gemini-1.5-flash",



    # Cohere Models

    "c4ai-aya-23-35b",

    "c4ai-aya-23-8b",

    "command",

    "command-light",

    "command-light-nightly",

    "command-nightly",

    "command-r",

    "command-r-08-2024",

    "command-r-plus",

    "command-r-plus-08-2024",

    "rerank-english-v2.0",

    "rerank-english-v3.0",

    "rerank-multilingual-v2.0",

    "rerank-multilingual-v3.0",



    # Microsoft Models

    "@cf/microsoft/phi-2",

    "microsoft/DialoGPT-medium",

    "microsoft/Phi-3-medium-4k-instruct",

    "microsoft/Phi-3-mini-4k-instruct",

    "microsoft/Phi-3.5-mini-instruct",

    "microsoft/WizardLM-2-8x22B",



    # Yi Models

    "01-ai/Yi-1.5-34B-Chat",

    "01-ai/Yi-34B-Chat",

]



# Create mapping from simplified model names to original model names

model_mapping = {}

simplified_models = []



for original_model in original_models:

    simplified_name = original_model.split('/')[-1]

    if simplified_name in model_mapping:

        # Conflict detected, handle as per instructions

        print(f"Conflict detected for model name '{simplified_name}'. Excluding '{original_model}' from available models.")

        continue

    model_mapping[simplified_name] = original_model

    simplified_models.append(simplified_name)



def generate(

    model,

    messages,

    temperature=0.7,

    top_p=1.0,

    n=1,

    stream=False,

    stop=None,

    max_tokens=None,

    presence_penalty=0.0,

    frequency_penalty=0.0,

    logit_bias=None,

    user=None,

    timeout=30,

):

    """

    Generates a chat completion using the provided model and messages.

    """

    # Use the simplified model names

    models = simplified_models



    if model not in models:

        raise ValueError(f"Invalid model: {model}. Choose from: {', '.join(models)}")

    

    # Map simplified model name to original model name

    original_model = model_mapping[model]



    api_endpoint = "https://chat.typegpt.net/api/openai/v1/chat/completions"

    

    headers = {

        "authority": "chat.typegpt.net",

        "accept": "application/json, text/event-stream",

        "accept-language": "en-US,en;q=0.9",

        "content-type": "application/json",

        "origin": "https://chat.typegpt.net",

        "referer": "https://chat.typegpt.net/",

        "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36"

    }

    

    # Payload

    payload = {

        "messages": messages,

        "stream": stream,

        "model": original_model,

        "temperature": temperature,

        "presence_penalty": presence_penalty,

        "frequency_penalty": frequency_penalty,

        "top_p": top_p,

    }



    # Only include max_tokens if it's not None

    if max_tokens is not None:

        payload["max_tokens"] = max_tokens



    # Only include 'stop' if it's not None

    if stop is not None:

        payload["stop"] = stop



    # Check if logit_bias is provided

    if logit_bias is not None:

        payload["logit_bias"] = logit_bias



    # Include 'user' if provided

    if user is not None:

        payload["user"] = user



    # Start the request

    session = requests.Session()

    response = session.post(

        api_endpoint, headers=headers, json=payload, stream=stream, timeout=timeout

    )

    

    if not response.ok:

        raise Exception(f"Failed to generate response - ({response.status_code}, {response.reason}) - {response.text}")

    

    def stream_response():

        for line in response.iter_lines():

            if line:

                line = line.decode("utf-8")

                if line.startswith("data: "):

                    line = line[6:]  # Remove "data: " prefix

                    if line.strip() == "[DONE]":

                        break

                    try:

                        data = json.loads(line)

                        yield data

                    except json.JSONDecodeError:

                        continue



    if stream:

        return stream_response()

    else:

        return response.json()



if __name__ == "__main__":

    # Example usage

    # model = "claude-3-5-sonnet-20240620"

    # model = "qwen1.5-0.5b-chat"

    # model = "llama-2-7b-chat-fp16"

    model = "gpt-3.5-turbo"

    messages = [

        {"role": "system", "content": "Be Detailed"},

        {"role": "user", "content": "What is the knowledge cut off? Be specific and also specify the month, year and date. If not sure, then provide approximate."}

    ]



    # try:

    #     # For non-streamed response

    #     response = generate(

    #         model=model,

    #         messages=messages,

    #         temperature=0.5,

    #         max_tokens=4000,

    #         stream=False  # Change to True for streaming

    #     )

    #     if 'choices' in response:

    #         reply = response['choices'][0]['message']['content']

    #         print(reply)

    #     else:

    #         print("No response received.")

    # except Exception as e:

    #     print(e)





    try:

        # For streamed response

        response = generate(

            model=model,

            messages=messages,

            temperature=0.5,

            max_tokens=4000,

            stream=True,  # Change to False for non-streamed response

        )

        for data in response:

            if 'choices' in data:

                reply = data['choices'][0]['delta']['content']

                print(reply, end="", flush=True)

            else:

                print("No response received.")

    except Exception as e:

        print(e)

```

```python

from fastapi import FastAPI, Request, Response

from fastapi.responses import JSONResponse, StreamingResponse

from fastapi.middleware.cors import CORSMiddleware

import uvicorn

import asyncio

import json

import requests



from TYPEGPT.typegpt_api import generate, model_mapping, simplified_models

from api_info import developer_info



app = FastAPI()



# Set up CORS middleware if needed

app.add_middleware(

    CORSMiddleware,

    allow_origins=["*"],

    allow_credentials=True,

    allow_methods=["*"],

    allow_headers=["*"],

)



@app.get("/health_check")

async def health_check():

    return {"status": "OK"}



@app.get("/models")

async def get_models():

    # Retrieve models from TypeGPT API and forward the response

    api_endpoint = "https://chat.typegpt.net/api/openai/v1/models"

    try:

        response = requests.get(api_endpoint)

        # return response.text

        return JSONResponse(content=response.json(), status_code=response.status_code)

    except Exception as e:

        return JSONResponse(content={"error": str(e)}, status_code=500)



@app.post("/chat/completions")

async def chat_completions(request: Request):

    # Receive the JSON payload

    try:

        body = await request.json()

    except Exception as e:

        return JSONResponse(content={"error": "Invalid JSON payload"}, status_code=400)



    # Extract parameters

    model = body.get("model")

    messages = body.get("messages")

    temperature = body.get("temperature", 0.7)

    top_p = body.get("top_p", 1.0)

    n = body.get("n", 1)

    stream = body.get("stream", False)

    stop = body.get("stop")

    max_tokens = body.get("max_tokens")

    presence_penalty = body.get("presence_penalty", 0.0)

    frequency_penalty = body.get("frequency_penalty", 0.0)

    logit_bias = body.get("logit_bias")

    user = body.get("user")

    timeout = 30  # or set based on your preference



    # Validate required parameters

    if not model:

        return JSONResponse(content={"error": "The 'model' parameter is required."}, status_code=400)

    if not messages:

        return JSONResponse(content={"error": "The 'messages' parameter is required."}, status_code=400)



    # Call the generate function

    try:

        if stream:

            async def generate_stream():

                response = generate(

                    model=model,

                    messages=messages,

                    temperature=temperature,

                    top_p=top_p,

                    n=n,

                    stream=True,

                    stop=stop,

                    max_tokens=max_tokens,

                    presence_penalty=presence_penalty,

                    frequency_penalty=frequency_penalty,

                    logit_bias=logit_bias,

                    user=user,

                    timeout=timeout,

                )

                

                for chunk in response:

                    yield f"data: {json.dumps(chunk)}\n\n"

                yield "data: [DONE]\n\n"



            return StreamingResponse(

                generate_stream(),

                media_type="text/event-stream",

                headers={

                    "Cache-Control": "no-cache",

                    "Connection": "keep-alive",

                    "Transfer-Encoding": "chunked"

                }

            )

        else:

            response = generate(

                model=model,

                messages=messages,

                temperature=temperature,

                top_p=top_p,

                n=n,

                stream=False,

                stop=stop,

                max_tokens=max_tokens,

                presence_penalty=presence_penalty,

                frequency_penalty=frequency_penalty,

                logit_bias=logit_bias,

                user=user,

                timeout=timeout,

            )

            return JSONResponse(content=response)

    except Exception as e:

        return JSONResponse(content={"error": str(e)}, status_code=500)



@app.get("/developer_info")

async def get_developer_info():

    return JSONResponse(content=developer_info)



if __name__ == "__main__":

    uvicorn.run(app, host="0.0.0.0", port=8000)

```