ALeLacheur's picture
uploading audio diffusion attacks
5a9b731
raw
history blame
5.05 kB
import torch
from TTS.api import TTS
#Andy edited: import losses
import audio_diffusion_attacks_forhf.src.losses
from audiotools import AudioSignal
import numpy as np
import torchaudio
import random
import string
import os
class XTTS_Eval:
def __init__(self, input_sample_rate, text="The quick brown fox jumps over the lazy dog."):
self.model = TTS("tts_models/multilingual/multi-dataset/xtts_v2")
self.model=self.model.to(device='cuda')
self.text=text
self.input_sample_rate=input_sample_rate
self.mel_loss = losses.MelSpectrogramLoss(n_mels=[5, 10, 20, 40, 80, 160, 320],
window_lengths=[32, 64, 128, 256, 512, 1024, 2048],
mel_fmin=[0, 0, 0, 0, 0, 0, 0],
pow=1.0,
clamp_eps=1.0e-5,
mag_weight=0.0)
def eval(self, original_audio, protected_audio):
original_audio=original_audio[0]
protected_audio=protected_audio[0]
unprotected_gen=self.generate_audio(original_audio).to(device='cuda')
protected_gen=self.generate_audio(protected_audio).to(device='cuda')
match_len=min(original_audio.shape[1], unprotected_gen.shape[1])
if original_audio.shape[1]<unprotected_gen.shape[1]:
s_unprotected_gen=unprotected_gen[:, :match_len]
s_protected_gen=unprotected_gen[:, :match_len]
s_original_audio=original_audio
s_protected_audio=protected_audio
else:
s_unprotected_gen=unprotected_gen
s_protected_gen=unprotected_gen
s_original_audio=original_audio[:, :match_len]
s_protected_audio=protected_audio[:, :match_len]
match_len=min(protected_gen.shape[1], unprotected_gen.shape[1])
protected_gen=protected_gen[:,:match_len]
unprotected_gen=unprotected_gen[:,:match_len]
eval_dict={}
# Difference between original and unprotected gen
eval_dict["original_unprotectedgen_l1"]=torch.mean(torch.abs(s_original_audio-s_unprotected_gen))
eval_dict["original_unprotectedgen_mel"]=self.mel_loss(AudioSignal(s_original_audio, self.input_sample_rate), AudioSignal(s_unprotected_gen, self.input_sample_rate))
# Difference between original and protected gen
eval_dict["original_protectedgen_l1"]=torch.mean(torch.abs(s_original_audio-s_protected_gen))
eval_dict["original_protectedgen_mel"]=self.mel_loss(AudioSignal(s_original_audio, self.input_sample_rate), AudioSignal(s_protected_gen, self.input_sample_rate))
# Difference between protected and protected gen
eval_dict["protected_protectedgen_l1"]=torch.mean(torch.abs(s_protected_audio-s_protected_gen))
eval_dict["protected_protectedgen_mel"]=self.mel_loss(AudioSignal(s_protected_audio, self.input_sample_rate), AudioSignal(s_protected_gen, self.input_sample_rate))
# Difference between unprotected gen and protected gen
eval_dict["protectedgen_unprotectedgen_l1"]=torch.mean(torch.abs(protected_gen-unprotected_gen))
eval_dict["protectedgen_unprotectedgen_mel"]=self.mel_loss(AudioSignal(protected_gen, self.input_sample_rate), AudioSignal(unprotected_gen, self.input_sample_rate))
return eval_dict, unprotected_gen, protected_gen
def generate_audio(self, audio):
random_str=''.join(random.choices(string.ascii_uppercase + string.digits, k=50))
torchaudio.save(f"test_audio/{random_str}.wav", torch.reshape(audio.detach().cpu(), (2, audio.shape[1])), self.input_sample_rate, format="wav")
torch.manual_seed(0)
wav = self.model.tts(text=self.text,
speaker_wav=f"test_audio/{random_str}.wav",
language="en")
os.remove(f"test_audio/{random_str}.wav")
wav=torch.from_numpy(np.array(wav))
stereo_wave=torch.zeros((2, wav.shape[0]))
stereo_wave[:,:]=wav
transform = torchaudio.transforms.Resample(24000, self.input_sample_rate)
stereo_wave=transform(stereo_wave)
return stereo_wave
# # Init TTS
# tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)
#
# # Run TTS
# # ❗ Since this model is multi-lingual voice cloning model, we must set the target speaker_wav and language
# # Text to speech list of amplitude values as output
# # wav = tts.tts(text="Hello world!", speaker_wav=, language="en")
# # Text to speech to a file
# tts.tts_to_file(text="Hello world!",
# speaker_wav="/media/willie/1caf5422-4135-4f2c-9619-c44041b51146/audio_data/DS_10283_3443/VCTK-Corpus-0.92/wav48_silence_trimmed/p227/p227_023_mic1.flac",
# language="en",
# file_path="/home/willie/eclipse-workspace/audio_diffusion_attacks/src/test_audio/speech/output.wav")