Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 3,910 Bytes
f766ce9 982af90 f766ce9 982af90 f766ce9 8a1daf9 f766ce9 b9d42b4 f766ce9 b9d42b4 5b7aad9 b9d42b4 f766ce9 b9d42b4 5b7aad9 b9d42b4 36c5a0c b9d42b4 5b7aad9 b9d42b4 f766ce9 b9d42b4 5b7aad9 b9d42b4 f766ce9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
# Your leaderboard name
TITLE = """<h1 align="center" id="space-title">AIR-Bench: Automated Heterogeneous Information Retrieval Benchmark
(Preview) </h1>"""
# What does your leaderboard evaluate?
INTRODUCTION_TEXT = """
Check more information at [our GitHub repo](https://github.com/AIR-Bench/AIR-Bench)
"""
# Which evaluations are you running? how can people reproduce what you have?
BENCHMARKS_TEXT = f"""
## How it works
Check more information at [our GitHub repo](https://github.com/AIR-Bench/AIR-Bench)
"""
EVALUATION_QUEUE_TEXT = """
## Steps for submit to AIR-Bench
1. Install AIR-Bench
```bash
# Clone the repo
git clone https://github.com/AIR-Bench/AIR-Bench.git
# Install the package
cd AIR-Bench
pip install .
```
2. Run the evaluation script
```bash
cd AIR-Bench/scripts
# Run all tasks
python run_AIR-Bench.py \
--output_dir ./search_results \
--encoder BAAI/bge-m3 \
--encoder_link https://huggingface.co/BAAI/bge-m3 \
--reranker BAAI/bge-reranker-v2-m3 \
--reranker_link https://huggingface.co/BAAI/bge-reranker-v2-m3 \
--search_top_k 1000 \
--rerank_top_k 100 \
--max_query_length 512 \
--max_passage_length 512 \
--batch_size 512 \
--pooling_method cls \
--normalize_embeddings True \
--use_fp16 True \
--add_instruction False \
--overwrite False
# Run the tasks in the specified task type
python run_AIR-Bench.py \
--task_types long-doc \
--output_dir ./search_results \
--encoder BAAI/bge-m3 \
--encoder_link https://huggingface.co/BAAI/bge-m3 \
--reranker BAAI/bge-reranker-v2-m3 \
--reranker_link https://huggingface.co/BAAI/bge-reranker-v2-m3 \
--search_top_k 1000 \
--rerank_top_k 100 \
--max_query_length 512 \
--max_passage_length 512 \
--batch_size 512 \
--pooling_method cls \
--normalize_embeddings True \
--use_fp16 True \
--add_instruction False \
--overwrite False
# Run the tasks in the specified task type and domains
python run_AIR-Bench.py \
--task_types long-doc \
--domains arxiv book \
--output_dir ./search_results \
--encoder BAAI/bge-m3 \
--encoder_link https://huggingface.co/BAAI/bge-m3 \
--reranker BAAI/bge-reranker-v2-m3 \
--reranker_link https://huggingface.co/BAAI/bge-reranker-v2-m3 \
--search_top_k 1000 \
--rerank_top_k 100 \
--max_query_length 512 \
--max_passage_length 512 \
--batch_size 512 \
--pooling_method cls \
--normalize_embeddings True \
--use_fp16 True \
--add_instruction False \
--overwrite False
# Run the tasks in the specified languages
python run_AIR-Bench.py \
--languages en \
--output_dir ./search_results \
--encoder BAAI/bge-m3 \
--encoder_link https://huggingface.co/BAAI/bge-m3 \
--reranker BAAI/bge-reranker-v2-m3 \
--reranker_link https://huggingface.co/BAAI/bge-reranker-v2-m3 \
--search_top_k 1000 \
--rerank_top_k 100 \
--max_query_length 512 \
--max_passage_length 512 \
--batch_size 512 \
--pooling_method cls \
--normalize_embeddings True \
--use_fp16 True \
--add_instruction False \
--overwrite False
# Run the tasks in the specified task type, domains, and languages
python run_AIR-Bench.py \
--task_types qa \
--domains wiki web \
--languages en \
--output_dir ./search_results \
--encoder BAAI/bge-m3 \
--encoder_link https://huggingface.co/BAAI/bge-m3 \
--reranker BAAI/bge-reranker-v2-m3 \
--reranker_link https://huggingface.co/BAAI/bge-reranker-v2-m3 \
--search_top_k 1000 \
--rerank_top_k 100 \
--max_query_length 512 \
--max_passage_length 512 \
--batch_size 512 \
--pooling_method cls \
--normalize_embeddings True \
--use_fp16 True \
--add_instruction False \
--overwrite False
```
3. Package the search results.
```bash
python zip_results.py \
--results_path search_results/bge-m3 \
--save_path search_results/zipped_results
```
4. Upload the `.zip` file on this page and fill in the model information.
5. Congratulation! Your results will be shown on the leaderboard in up to one hour.
"""
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""
"""
|