File size: 2,184 Bytes
8e82bd0
 
 
 
40891f0
8e82bd0
 
40891f0
8e82bd0
40891f0
 
 
8e82bd0
 
 
 
f5213da
184a293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e82bd0
40891f0
0fcd9d6
8e82bd0
 
 
0fcd9d6
8e82bd0
184a293
 
 
204f3f2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
language:
- en
---
# nli-entailment-verifier-xxl

## Model description
**nli-entailment-verifier-xxl** is based on [flan-t5-xxl model](https://huggingface.co/google/flan-t5-xxl) and finetuned with a ranking objective (rank the most supported hypothesis from a given pair of hypotheses for a given premise). Please refer to our paper [Are Machines Better at Complex Reasoning? Unveiling Human-Machine Inference Gaps in Entailment Verification](https://arxiv.org/abs/2402.03686) for more detals.

It is built to verify whether a given premise supports a hypothesis or not. It works for both NLI-style datasets and CoT rationales. This model is specifically trained to handle multi-sentence premises (similar to what we expect in CoT rationales and other modern LLM use cases).

**Note**: You can use 4-bit/8-bit [quantization](https://huggingface.co/docs/bitsandbytes/main/en/index) to reduce GPU memory usage.

## Usage

```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch

def get_score(model, tokenizer, input_ids):
    pos_ids = tokenizer('Yes').input_ids
    neg_ids = tokenizer('No').input_ids
    pos_id = pos_ids[0]
    neg_id = neg_ids[0]
    
    logits = model(input_ids, decoder_input_ids=torch.zeros((input_ids.size(0), 1), dtype=torch.long)).logits
    pos_logits = logits[:, 0, pos_id]
    neg_logits = logits[:, 0, neg_id]
    posneg_logits = torch.cat([pos_logits.unsqueeze(-1), neg_logits.unsqueeze(-1)], dim=1)
    scores = torch.nn.functional.softmax(posneg_logits, dim=1)[:, 0]
    return scores

tokenizer = AutoTokenizer.from_pretrained('google/flan-t5-xxl')
model = AutoModelForSeq2SeqLM.from_pretrained('soumyasanyal/nli-entailment-verifier-xxl')

premise = "A fossil fuel is a kind of natural resource. Coal is a kind of fossil fuel."
hypothesis = "Coal is a kind of natural resource."
prompt = f"Premise: {premise}\nHypothesis: {hypothesis}\nGiven the premise, is the hypothesis correct?\nAnswer:"

input_ids = tokenizer(prompt, return_tensors='pt').input_ids

scores = get_score(model, tokenizer, input_ids)
print(f'Hypothesis entails the premise: {bool(scores >= 0.5)}')
```
> `['Hypothesis entails the premise: False']`