Upload folder using huggingface_hub
Browse files- 1_Pooling/config.json +10 -0
- README.md +433 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- optimizer.pt +3 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +56 -0
- trainer_state.json +367 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,433 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- generated_from_trainer
|
9 |
+
- dataset_size:557850
|
10 |
+
- loss:MultipleNegativesRankingLoss
|
11 |
+
base_model: google-bert/bert-base-uncased
|
12 |
+
widget:
|
13 |
+
- source_sentence: A man is jumping unto his filthy bed.
|
14 |
+
sentences:
|
15 |
+
- A young male is looking at a newspaper while 2 females walks past him.
|
16 |
+
- The bed is dirty.
|
17 |
+
- The man is on the moon.
|
18 |
+
- source_sentence: A carefully balanced male stands on one foot near a clean ocean
|
19 |
+
beach area.
|
20 |
+
sentences:
|
21 |
+
- A man is ouside near the beach.
|
22 |
+
- Three policemen patrol the streets on bikes
|
23 |
+
- A man is sitting on his couch.
|
24 |
+
- source_sentence: The man is wearing a blue shirt.
|
25 |
+
sentences:
|
26 |
+
- Near the trashcan the man stood and smoked
|
27 |
+
- A man in a blue shirt leans on a wall beside a road with a blue van and red car
|
28 |
+
with water in the background.
|
29 |
+
- A man in a black shirt is playing a guitar.
|
30 |
+
- source_sentence: The girls are outdoors.
|
31 |
+
sentences:
|
32 |
+
- Two girls riding on an amusement part ride.
|
33 |
+
- a guy laughs while doing laundry
|
34 |
+
- Three girls are standing together in a room, one is listening, one is writing
|
35 |
+
on a wall and the third is talking to them.
|
36 |
+
- source_sentence: A construction worker peeking out of a manhole while his coworker
|
37 |
+
sits on the sidewalk smiling.
|
38 |
+
sentences:
|
39 |
+
- A worker is looking out of a manhole.
|
40 |
+
- A man is giving a presentation.
|
41 |
+
- The workers are both inside the manhole.
|
42 |
+
datasets:
|
43 |
+
- sentence-transformers/all-nli
|
44 |
+
pipeline_tag: sentence-similarity
|
45 |
+
library_name: sentence-transformers
|
46 |
+
---
|
47 |
+
|
48 |
+
# SentenceTransformer based on google-bert/bert-base-uncased
|
49 |
+
|
50 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
51 |
+
|
52 |
+
## Model Details
|
53 |
+
|
54 |
+
### Model Description
|
55 |
+
- **Model Type:** Sentence Transformer
|
56 |
+
- **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
|
57 |
+
- **Maximum Sequence Length:** 256 tokens
|
58 |
+
- **Output Dimensionality:** 768 dimensions
|
59 |
+
- **Similarity Function:** Cosine Similarity
|
60 |
+
- **Training Dataset:**
|
61 |
+
- [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
|
62 |
+
- **Language:** en
|
63 |
+
<!-- - **License:** Unknown -->
|
64 |
+
|
65 |
+
### Model Sources
|
66 |
+
|
67 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
68 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
69 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
70 |
+
|
71 |
+
### Full Model Architecture
|
72 |
+
|
73 |
+
```
|
74 |
+
SentenceTransformer(
|
75 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
76 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
77 |
+
(2): Normalize()
|
78 |
+
)
|
79 |
+
```
|
80 |
+
|
81 |
+
## Usage
|
82 |
+
|
83 |
+
### Direct Usage (Sentence Transformers)
|
84 |
+
|
85 |
+
First install the Sentence Transformers library:
|
86 |
+
|
87 |
+
```bash
|
88 |
+
pip install -U sentence-transformers
|
89 |
+
```
|
90 |
+
|
91 |
+
Then you can load this model and run inference.
|
92 |
+
```python
|
93 |
+
from sentence_transformers import SentenceTransformer
|
94 |
+
|
95 |
+
# Download from the 🤗 Hub
|
96 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
97 |
+
# Run inference
|
98 |
+
sentences = [
|
99 |
+
'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
|
100 |
+
'A worker is looking out of a manhole.',
|
101 |
+
'The workers are both inside the manhole.',
|
102 |
+
]
|
103 |
+
embeddings = model.encode(sentences)
|
104 |
+
print(embeddings.shape)
|
105 |
+
# [3, 768]
|
106 |
+
|
107 |
+
# Get the similarity scores for the embeddings
|
108 |
+
similarities = model.similarity(embeddings, embeddings)
|
109 |
+
print(similarities.shape)
|
110 |
+
# [3, 3]
|
111 |
+
```
|
112 |
+
|
113 |
+
<!--
|
114 |
+
### Direct Usage (Transformers)
|
115 |
+
|
116 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
117 |
+
|
118 |
+
</details>
|
119 |
+
-->
|
120 |
+
|
121 |
+
<!--
|
122 |
+
### Downstream Usage (Sentence Transformers)
|
123 |
+
|
124 |
+
You can finetune this model on your own dataset.
|
125 |
+
|
126 |
+
<details><summary>Click to expand</summary>
|
127 |
+
|
128 |
+
</details>
|
129 |
+
-->
|
130 |
+
|
131 |
+
<!--
|
132 |
+
### Out-of-Scope Use
|
133 |
+
|
134 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
135 |
+
-->
|
136 |
+
|
137 |
+
<!--
|
138 |
+
## Bias, Risks and Limitations
|
139 |
+
|
140 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
141 |
+
-->
|
142 |
+
|
143 |
+
<!--
|
144 |
+
### Recommendations
|
145 |
+
|
146 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
147 |
+
-->
|
148 |
+
|
149 |
+
## Training Details
|
150 |
+
|
151 |
+
### Training Dataset
|
152 |
+
|
153 |
+
#### all-nli
|
154 |
+
|
155 |
+
* Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
|
156 |
+
* Size: 557,850 training samples
|
157 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
158 |
+
* Approximate statistics based on the first 1000 samples:
|
159 |
+
| | anchor | positive | negative |
|
160 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
161 |
+
| type | string | string | string |
|
162 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.81 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
|
163 |
+
* Samples:
|
164 |
+
| anchor | positive | negative |
|
165 |
+
|:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
|
166 |
+
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
|
167 |
+
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
|
168 |
+
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
|
169 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
170 |
+
```json
|
171 |
+
{
|
172 |
+
"scale": 20.0,
|
173 |
+
"similarity_fct": "cos_sim"
|
174 |
+
}
|
175 |
+
```
|
176 |
+
|
177 |
+
### Evaluation Dataset
|
178 |
+
|
179 |
+
#### all-nli
|
180 |
+
|
181 |
+
* Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
|
182 |
+
* Size: 6,584 evaluation samples
|
183 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
184 |
+
* Approximate statistics based on the first 1000 samples:
|
185 |
+
| | anchor | positive | negative |
|
186 |
+
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
187 |
+
| type | string | string | string |
|
188 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 17.95 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.78 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.35 tokens</li><li>max: 29 tokens</li></ul> |
|
189 |
+
* Samples:
|
190 |
+
| anchor | positive | negative |
|
191 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
|
192 |
+
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
|
193 |
+
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
|
194 |
+
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
|
195 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
196 |
+
```json
|
197 |
+
{
|
198 |
+
"scale": 20.0,
|
199 |
+
"similarity_fct": "cos_sim"
|
200 |
+
}
|
201 |
+
```
|
202 |
+
|
203 |
+
### Training Hyperparameters
|
204 |
+
#### Non-Default Hyperparameters
|
205 |
+
|
206 |
+
- `eval_strategy`: steps
|
207 |
+
- `per_device_train_batch_size`: 128
|
208 |
+
- `per_device_eval_batch_size`: 128
|
209 |
+
- `learning_rate`: 1e-05
|
210 |
+
- `warmup_ratio`: 0.1
|
211 |
+
- `batch_sampler`: no_duplicates
|
212 |
+
|
213 |
+
#### All Hyperparameters
|
214 |
+
<details><summary>Click to expand</summary>
|
215 |
+
|
216 |
+
- `overwrite_output_dir`: False
|
217 |
+
- `do_predict`: False
|
218 |
+
- `eval_strategy`: steps
|
219 |
+
- `prediction_loss_only`: True
|
220 |
+
- `per_device_train_batch_size`: 128
|
221 |
+
- `per_device_eval_batch_size`: 128
|
222 |
+
- `per_gpu_train_batch_size`: None
|
223 |
+
- `per_gpu_eval_batch_size`: None
|
224 |
+
- `gradient_accumulation_steps`: 1
|
225 |
+
- `eval_accumulation_steps`: None
|
226 |
+
- `torch_empty_cache_steps`: None
|
227 |
+
- `learning_rate`: 1e-05
|
228 |
+
- `weight_decay`: 0.0
|
229 |
+
- `adam_beta1`: 0.9
|
230 |
+
- `adam_beta2`: 0.999
|
231 |
+
- `adam_epsilon`: 1e-08
|
232 |
+
- `max_grad_norm`: 1.0
|
233 |
+
- `num_train_epochs`: 3
|
234 |
+
- `max_steps`: -1
|
235 |
+
- `lr_scheduler_type`: linear
|
236 |
+
- `lr_scheduler_kwargs`: {}
|
237 |
+
- `warmup_ratio`: 0.1
|
238 |
+
- `warmup_steps`: 0
|
239 |
+
- `log_level`: passive
|
240 |
+
- `log_level_replica`: warning
|
241 |
+
- `log_on_each_node`: True
|
242 |
+
- `logging_nan_inf_filter`: True
|
243 |
+
- `save_safetensors`: True
|
244 |
+
- `save_on_each_node`: False
|
245 |
+
- `save_only_model`: False
|
246 |
+
- `restore_callback_states_from_checkpoint`: False
|
247 |
+
- `no_cuda`: False
|
248 |
+
- `use_cpu`: False
|
249 |
+
- `use_mps_device`: False
|
250 |
+
- `seed`: 42
|
251 |
+
- `data_seed`: None
|
252 |
+
- `jit_mode_eval`: False
|
253 |
+
- `use_ipex`: False
|
254 |
+
- `bf16`: False
|
255 |
+
- `fp16`: False
|
256 |
+
- `fp16_opt_level`: O1
|
257 |
+
- `half_precision_backend`: auto
|
258 |
+
- `bf16_full_eval`: False
|
259 |
+
- `fp16_full_eval`: False
|
260 |
+
- `tf32`: None
|
261 |
+
- `local_rank`: 0
|
262 |
+
- `ddp_backend`: None
|
263 |
+
- `tpu_num_cores`: None
|
264 |
+
- `tpu_metrics_debug`: False
|
265 |
+
- `debug`: []
|
266 |
+
- `dataloader_drop_last`: False
|
267 |
+
- `dataloader_num_workers`: 0
|
268 |
+
- `dataloader_prefetch_factor`: None
|
269 |
+
- `past_index`: -1
|
270 |
+
- `disable_tqdm`: False
|
271 |
+
- `remove_unused_columns`: True
|
272 |
+
- `label_names`: None
|
273 |
+
- `load_best_model_at_end`: False
|
274 |
+
- `ignore_data_skip`: False
|
275 |
+
- `fsdp`: []
|
276 |
+
- `fsdp_min_num_params`: 0
|
277 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
278 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
279 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
280 |
+
- `deepspeed`: None
|
281 |
+
- `label_smoothing_factor`: 0.0
|
282 |
+
- `optim`: adamw_torch
|
283 |
+
- `optim_args`: None
|
284 |
+
- `adafactor`: False
|
285 |
+
- `group_by_length`: False
|
286 |
+
- `length_column_name`: length
|
287 |
+
- `ddp_find_unused_parameters`: None
|
288 |
+
- `ddp_bucket_cap_mb`: None
|
289 |
+
- `ddp_broadcast_buffers`: False
|
290 |
+
- `dataloader_pin_memory`: True
|
291 |
+
- `dataloader_persistent_workers`: False
|
292 |
+
- `skip_memory_metrics`: True
|
293 |
+
- `use_legacy_prediction_loop`: False
|
294 |
+
- `push_to_hub`: False
|
295 |
+
- `resume_from_checkpoint`: None
|
296 |
+
- `hub_model_id`: None
|
297 |
+
- `hub_strategy`: every_save
|
298 |
+
- `hub_private_repo`: None
|
299 |
+
- `hub_always_push`: False
|
300 |
+
- `gradient_checkpointing`: False
|
301 |
+
- `gradient_checkpointing_kwargs`: None
|
302 |
+
- `include_inputs_for_metrics`: False
|
303 |
+
- `include_for_metrics`: []
|
304 |
+
- `eval_do_concat_batches`: True
|
305 |
+
- `fp16_backend`: auto
|
306 |
+
- `push_to_hub_model_id`: None
|
307 |
+
- `push_to_hub_organization`: None
|
308 |
+
- `mp_parameters`:
|
309 |
+
- `auto_find_batch_size`: False
|
310 |
+
- `full_determinism`: False
|
311 |
+
- `torchdynamo`: None
|
312 |
+
- `ray_scope`: last
|
313 |
+
- `ddp_timeout`: 1800
|
314 |
+
- `torch_compile`: False
|
315 |
+
- `torch_compile_backend`: None
|
316 |
+
- `torch_compile_mode`: None
|
317 |
+
- `dispatch_batches`: None
|
318 |
+
- `split_batches`: None
|
319 |
+
- `include_tokens_per_second`: False
|
320 |
+
- `include_num_input_tokens_seen`: False
|
321 |
+
- `neftune_noise_alpha`: None
|
322 |
+
- `optim_target_modules`: None
|
323 |
+
- `batch_eval_metrics`: False
|
324 |
+
- `eval_on_start`: False
|
325 |
+
- `use_liger_kernel`: False
|
326 |
+
- `eval_use_gather_object`: False
|
327 |
+
- `average_tokens_across_devices`: False
|
328 |
+
- `prompts`: None
|
329 |
+
- `batch_sampler`: no_duplicates
|
330 |
+
- `multi_dataset_batch_sampler`: proportional
|
331 |
+
|
332 |
+
</details>
|
333 |
+
|
334 |
+
### Training Logs
|
335 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
336 |
+
|:------:|:----:|:-------------:|:---------------:|
|
337 |
+
| 0.0011 | 5 | - | 2.7554 |
|
338 |
+
| 0.0023 | 10 | - | 2.7506 |
|
339 |
+
| 0.0034 | 15 | - | 2.7424 |
|
340 |
+
| 0.0046 | 20 | - | 2.7309 |
|
341 |
+
| 0.0057 | 25 | - | 2.7160 |
|
342 |
+
| 0.0069 | 30 | - | 2.6975 |
|
343 |
+
| 0.0080 | 35 | - | 2.6757 |
|
344 |
+
| 0.0092 | 40 | - | 2.6502 |
|
345 |
+
| 0.0103 | 45 | - | 2.6214 |
|
346 |
+
| 0.0115 | 50 | - | 2.5893 |
|
347 |
+
| 0.0126 | 55 | - | 2.5538 |
|
348 |
+
| 0.0138 | 60 | - | 2.5145 |
|
349 |
+
| 0.0149 | 65 | - | 2.4726 |
|
350 |
+
| 0.0161 | 70 | - | 2.4282 |
|
351 |
+
| 0.0172 | 75 | - | 2.3795 |
|
352 |
+
| 0.0184 | 80 | - | 2.3272 |
|
353 |
+
| 0.0195 | 85 | - | 2.2712 |
|
354 |
+
| 0.0206 | 90 | - | 2.2120 |
|
355 |
+
| 0.0218 | 95 | - | 2.1501 |
|
356 |
+
| 0.0229 | 100 | 3.6197 | 2.0866 |
|
357 |
+
| 0.0241 | 105 | - | 2.0223 |
|
358 |
+
| 0.0252 | 110 | - | 1.9571 |
|
359 |
+
| 0.0264 | 115 | - | 1.8907 |
|
360 |
+
| 0.0275 | 120 | - | 1.8239 |
|
361 |
+
| 0.0287 | 125 | - | 1.7583 |
|
362 |
+
| 0.0298 | 130 | - | 1.6938 |
|
363 |
+
| 0.0310 | 135 | - | 1.6316 |
|
364 |
+
| 0.0321 | 140 | - | 1.5719 |
|
365 |
+
| 0.0333 | 145 | - | 1.5148 |
|
366 |
+
| 0.0344 | 150 | - | 1.4598 |
|
367 |
+
| 0.0356 | 155 | - | 1.4081 |
|
368 |
+
| 0.0367 | 160 | - | 1.3612 |
|
369 |
+
| 0.0379 | 165 | - | 1.3182 |
|
370 |
+
| 0.0390 | 170 | - | 1.2803 |
|
371 |
+
| 0.0401 | 175 | - | 1.2463 |
|
372 |
+
| 0.0413 | 180 | - | 1.2160 |
|
373 |
+
| 0.0424 | 185 | - | 1.1895 |
|
374 |
+
| 0.0436 | 190 | - | 1.1654 |
|
375 |
+
| 0.0447 | 195 | - | 1.1435 |
|
376 |
+
| 0.0459 | 200 | 2.292 | 1.1240 |
|
377 |
+
|
378 |
+
|
379 |
+
### Framework Versions
|
380 |
+
- Python: 3.12.8
|
381 |
+
- Sentence Transformers: 3.4.1
|
382 |
+
- Transformers: 4.48.3
|
383 |
+
- PyTorch: 2.2.0+cu121
|
384 |
+
- Accelerate: 1.3.0
|
385 |
+
- Datasets: 3.2.0
|
386 |
+
- Tokenizers: 0.21.0
|
387 |
+
|
388 |
+
## Citation
|
389 |
+
|
390 |
+
### BibTeX
|
391 |
+
|
392 |
+
#### Sentence Transformers
|
393 |
+
```bibtex
|
394 |
+
@inproceedings{reimers-2019-sentence-bert,
|
395 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
396 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
397 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
398 |
+
month = "11",
|
399 |
+
year = "2019",
|
400 |
+
publisher = "Association for Computational Linguistics",
|
401 |
+
url = "https://arxiv.org/abs/1908.10084",
|
402 |
+
}
|
403 |
+
```
|
404 |
+
|
405 |
+
#### MultipleNegativesRankingLoss
|
406 |
+
```bibtex
|
407 |
+
@misc{henderson2017efficient,
|
408 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
409 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
410 |
+
year={2017},
|
411 |
+
eprint={1705.00652},
|
412 |
+
archivePrefix={arXiv},
|
413 |
+
primaryClass={cs.CL}
|
414 |
+
}
|
415 |
+
```
|
416 |
+
|
417 |
+
<!--
|
418 |
+
## Glossary
|
419 |
+
|
420 |
+
*Clearly define terms in order to be accessible across audiences.*
|
421 |
+
-->
|
422 |
+
|
423 |
+
<!--
|
424 |
+
## Model Card Authors
|
425 |
+
|
426 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
427 |
+
-->
|
428 |
+
|
429 |
+
<!--
|
430 |
+
## Model Card Contact
|
431 |
+
|
432 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
433 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "google-bert/bert-base-uncased",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.48.3",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.1",
|
4 |
+
"transformers": "4.48.3",
|
5 |
+
"pytorch": "2.2.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c630911ec73fc100013ec51d08e1a5d5533c650218a8d99b871d80a9e18a3813
|
3 |
+
size 437951328
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b6bed59d6671b7ff1648ef6cc566136ba3e270fadbd78c498c91c1d838c7350
|
3 |
+
size 871297978
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf179cb0993a904f7fcd3d8311b9eb2c56c8e8737668a866210052c53f68bec8
|
3 |
+
size 14244
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4eb90646db40a69d634771e2b637e09273133952e702d4de1c2f4b1ced192661
|
3 |
+
size 1064
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"extra_special_tokens": {},
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 256,
|
50 |
+
"pad_token": "[PAD]",
|
51 |
+
"sep_token": "[SEP]",
|
52 |
+
"strip_accents": null,
|
53 |
+
"tokenize_chinese_chars": true,
|
54 |
+
"tokenizer_class": "BertTokenizer",
|
55 |
+
"unk_token": "[UNK]"
|
56 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.045882083046570314,
|
5 |
+
"eval_steps": 5,
|
6 |
+
"global_step": 200,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0011470520761642578,
|
13 |
+
"eval_loss": 2.755366325378418,
|
14 |
+
"eval_runtime": 14.0088,
|
15 |
+
"eval_samples_per_second": 469.989,
|
16 |
+
"eval_steps_per_second": 3.712,
|
17 |
+
"step": 5
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.0022941041523285156,
|
21 |
+
"eval_loss": 2.750617027282715,
|
22 |
+
"eval_runtime": 14.0654,
|
23 |
+
"eval_samples_per_second": 468.099,
|
24 |
+
"eval_steps_per_second": 3.697,
|
25 |
+
"step": 10
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"epoch": 0.0034411562284927736,
|
29 |
+
"eval_loss": 2.7424304485321045,
|
30 |
+
"eval_runtime": 14.1186,
|
31 |
+
"eval_samples_per_second": 466.336,
|
32 |
+
"eval_steps_per_second": 3.683,
|
33 |
+
"step": 15
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.004588208304657031,
|
37 |
+
"eval_loss": 2.730889081954956,
|
38 |
+
"eval_runtime": 14.2451,
|
39 |
+
"eval_samples_per_second": 462.193,
|
40 |
+
"eval_steps_per_second": 3.65,
|
41 |
+
"step": 20
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"epoch": 0.005735260380821289,
|
45 |
+
"eval_loss": 2.7159576416015625,
|
46 |
+
"eval_runtime": 14.245,
|
47 |
+
"eval_samples_per_second": 462.199,
|
48 |
+
"eval_steps_per_second": 3.65,
|
49 |
+
"step": 25
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"epoch": 0.006882312456985547,
|
53 |
+
"eval_loss": 2.6975343227386475,
|
54 |
+
"eval_runtime": 14.3448,
|
55 |
+
"eval_samples_per_second": 458.981,
|
56 |
+
"eval_steps_per_second": 3.625,
|
57 |
+
"step": 30
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.008029364533149804,
|
61 |
+
"eval_loss": 2.675693988800049,
|
62 |
+
"eval_runtime": 16.965,
|
63 |
+
"eval_samples_per_second": 388.094,
|
64 |
+
"eval_steps_per_second": 3.065,
|
65 |
+
"step": 35
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.009176416609314062,
|
69 |
+
"eval_loss": 2.650242328643799,
|
70 |
+
"eval_runtime": 14.2414,
|
71 |
+
"eval_samples_per_second": 462.315,
|
72 |
+
"eval_steps_per_second": 3.651,
|
73 |
+
"step": 40
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.01032346868547832,
|
77 |
+
"eval_loss": 2.6213560104370117,
|
78 |
+
"eval_runtime": 14.4168,
|
79 |
+
"eval_samples_per_second": 456.689,
|
80 |
+
"eval_steps_per_second": 3.607,
|
81 |
+
"step": 45
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.011470520761642579,
|
85 |
+
"eval_loss": 2.5892951488494873,
|
86 |
+
"eval_runtime": 14.3332,
|
87 |
+
"eval_samples_per_second": 459.353,
|
88 |
+
"eval_steps_per_second": 3.628,
|
89 |
+
"step": 50
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 0.012617572837806837,
|
93 |
+
"eval_loss": 2.5538384914398193,
|
94 |
+
"eval_runtime": 14.4067,
|
95 |
+
"eval_samples_per_second": 457.01,
|
96 |
+
"eval_steps_per_second": 3.609,
|
97 |
+
"step": 55
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"epoch": 0.013764624913971095,
|
101 |
+
"eval_loss": 2.51452374458313,
|
102 |
+
"eval_runtime": 14.4948,
|
103 |
+
"eval_samples_per_second": 454.233,
|
104 |
+
"eval_steps_per_second": 3.588,
|
105 |
+
"step": 60
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.014911676990135353,
|
109 |
+
"eval_loss": 2.4726295471191406,
|
110 |
+
"eval_runtime": 14.3162,
|
111 |
+
"eval_samples_per_second": 459.898,
|
112 |
+
"eval_steps_per_second": 3.632,
|
113 |
+
"step": 65
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"epoch": 0.01605872906629961,
|
117 |
+
"eval_loss": 2.428196668624878,
|
118 |
+
"eval_runtime": 14.3204,
|
119 |
+
"eval_samples_per_second": 459.763,
|
120 |
+
"eval_steps_per_second": 3.631,
|
121 |
+
"step": 70
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.017205781142463867,
|
125 |
+
"eval_loss": 2.379453659057617,
|
126 |
+
"eval_runtime": 14.3796,
|
127 |
+
"eval_samples_per_second": 457.872,
|
128 |
+
"eval_steps_per_second": 3.616,
|
129 |
+
"step": 75
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.018352833218628125,
|
133 |
+
"eval_loss": 2.327221393585205,
|
134 |
+
"eval_runtime": 14.3415,
|
135 |
+
"eval_samples_per_second": 459.089,
|
136 |
+
"eval_steps_per_second": 3.626,
|
137 |
+
"step": 80
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 0.019499885294792383,
|
141 |
+
"eval_loss": 2.2712388038635254,
|
142 |
+
"eval_runtime": 14.462,
|
143 |
+
"eval_samples_per_second": 455.263,
|
144 |
+
"eval_steps_per_second": 3.596,
|
145 |
+
"step": 85
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 0.02064693737095664,
|
149 |
+
"eval_loss": 2.2120068073272705,
|
150 |
+
"eval_runtime": 14.334,
|
151 |
+
"eval_samples_per_second": 459.326,
|
152 |
+
"eval_steps_per_second": 3.628,
|
153 |
+
"step": 90
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.0217939894471209,
|
157 |
+
"eval_loss": 2.1501331329345703,
|
158 |
+
"eval_runtime": 14.3506,
|
159 |
+
"eval_samples_per_second": 458.796,
|
160 |
+
"eval_steps_per_second": 3.624,
|
161 |
+
"step": 95
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 0.022941041523285157,
|
165 |
+
"grad_norm": 19.895355224609375,
|
166 |
+
"learning_rate": 7.645259938837921e-07,
|
167 |
+
"loss": 3.6197,
|
168 |
+
"step": 100
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"epoch": 0.022941041523285157,
|
172 |
+
"eval_loss": 2.086596727371216,
|
173 |
+
"eval_runtime": 16.6465,
|
174 |
+
"eval_samples_per_second": 395.519,
|
175 |
+
"eval_steps_per_second": 3.124,
|
176 |
+
"step": 100
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.024088093599449415,
|
180 |
+
"eval_loss": 2.0223236083984375,
|
181 |
+
"eval_runtime": 14.471,
|
182 |
+
"eval_samples_per_second": 454.979,
|
183 |
+
"eval_steps_per_second": 3.593,
|
184 |
+
"step": 105
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.025235145675613673,
|
188 |
+
"eval_loss": 1.9571231603622437,
|
189 |
+
"eval_runtime": 14.3783,
|
190 |
+
"eval_samples_per_second": 457.913,
|
191 |
+
"eval_steps_per_second": 3.617,
|
192 |
+
"step": 110
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.02638219775177793,
|
196 |
+
"eval_loss": 1.890655517578125,
|
197 |
+
"eval_runtime": 14.288,
|
198 |
+
"eval_samples_per_second": 460.805,
|
199 |
+
"eval_steps_per_second": 3.639,
|
200 |
+
"step": 115
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.02752924982794219,
|
204 |
+
"eval_loss": 1.823920488357544,
|
205 |
+
"eval_runtime": 14.3764,
|
206 |
+
"eval_samples_per_second": 457.972,
|
207 |
+
"eval_steps_per_second": 3.617,
|
208 |
+
"step": 120
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"epoch": 0.028676301904106447,
|
212 |
+
"eval_loss": 1.758331298828125,
|
213 |
+
"eval_runtime": 14.2666,
|
214 |
+
"eval_samples_per_second": 461.499,
|
215 |
+
"eval_steps_per_second": 3.645,
|
216 |
+
"step": 125
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"epoch": 0.029823353980270705,
|
220 |
+
"eval_loss": 1.6937522888183594,
|
221 |
+
"eval_runtime": 14.2522,
|
222 |
+
"eval_samples_per_second": 461.963,
|
223 |
+
"eval_steps_per_second": 3.649,
|
224 |
+
"step": 130
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.030970406056434963,
|
228 |
+
"eval_loss": 1.6316019296646118,
|
229 |
+
"eval_runtime": 16.3104,
|
230 |
+
"eval_samples_per_second": 403.67,
|
231 |
+
"eval_steps_per_second": 3.188,
|
232 |
+
"step": 135
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"epoch": 0.03211745813259922,
|
236 |
+
"eval_loss": 1.571895718574524,
|
237 |
+
"eval_runtime": 14.2422,
|
238 |
+
"eval_samples_per_second": 462.288,
|
239 |
+
"eval_steps_per_second": 3.651,
|
240 |
+
"step": 140
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.033264510208763476,
|
244 |
+
"eval_loss": 1.5148202180862427,
|
245 |
+
"eval_runtime": 14.3624,
|
246 |
+
"eval_samples_per_second": 458.418,
|
247 |
+
"eval_steps_per_second": 3.621,
|
248 |
+
"step": 145
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.034411562284927734,
|
252 |
+
"eval_loss": 1.459762454032898,
|
253 |
+
"eval_runtime": 14.3035,
|
254 |
+
"eval_samples_per_second": 460.308,
|
255 |
+
"eval_steps_per_second": 3.635,
|
256 |
+
"step": 150
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 0.03555861436109199,
|
260 |
+
"eval_loss": 1.4081143140792847,
|
261 |
+
"eval_runtime": 14.2988,
|
262 |
+
"eval_samples_per_second": 460.46,
|
263 |
+
"eval_steps_per_second": 3.637,
|
264 |
+
"step": 155
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 0.03670566643725625,
|
268 |
+
"eval_loss": 1.3612124919891357,
|
269 |
+
"eval_runtime": 14.2569,
|
270 |
+
"eval_samples_per_second": 461.812,
|
271 |
+
"eval_steps_per_second": 3.647,
|
272 |
+
"step": 160
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 0.03785271851342051,
|
276 |
+
"eval_loss": 1.318212866783142,
|
277 |
+
"eval_runtime": 14.282,
|
278 |
+
"eval_samples_per_second": 460.999,
|
279 |
+
"eval_steps_per_second": 3.641,
|
280 |
+
"step": 165
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"epoch": 0.038999770589584766,
|
284 |
+
"eval_loss": 1.2802687883377075,
|
285 |
+
"eval_runtime": 14.4058,
|
286 |
+
"eval_samples_per_second": 457.038,
|
287 |
+
"eval_steps_per_second": 3.61,
|
288 |
+
"step": 170
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"epoch": 0.040146822665749024,
|
292 |
+
"eval_loss": 1.246294617652893,
|
293 |
+
"eval_runtime": 14.2804,
|
294 |
+
"eval_samples_per_second": 461.051,
|
295 |
+
"eval_steps_per_second": 3.641,
|
296 |
+
"step": 175
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.04129387474191328,
|
300 |
+
"eval_loss": 1.2160167694091797,
|
301 |
+
"eval_runtime": 14.3449,
|
302 |
+
"eval_samples_per_second": 458.977,
|
303 |
+
"eval_steps_per_second": 3.625,
|
304 |
+
"step": 180
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.04244092681807754,
|
308 |
+
"eval_loss": 1.189509630203247,
|
309 |
+
"eval_runtime": 14.2361,
|
310 |
+
"eval_samples_per_second": 462.486,
|
311 |
+
"eval_steps_per_second": 3.653,
|
312 |
+
"step": 185
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 0.0435879788942418,
|
316 |
+
"eval_loss": 1.1653709411621094,
|
317 |
+
"eval_runtime": 14.3748,
|
318 |
+
"eval_samples_per_second": 458.025,
|
319 |
+
"eval_steps_per_second": 3.617,
|
320 |
+
"step": 190
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.044735030970406056,
|
324 |
+
"eval_loss": 1.143513798713684,
|
325 |
+
"eval_runtime": 14.25,
|
326 |
+
"eval_samples_per_second": 462.035,
|
327 |
+
"eval_steps_per_second": 3.649,
|
328 |
+
"step": 195
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"epoch": 0.045882083046570314,
|
332 |
+
"grad_norm": 8.192963600158691,
|
333 |
+
"learning_rate": 1.5290519877675841e-06,
|
334 |
+
"loss": 2.292,
|
335 |
+
"step": 200
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 0.045882083046570314,
|
339 |
+
"eval_loss": 1.1239805221557617,
|
340 |
+
"eval_runtime": 16.3012,
|
341 |
+
"eval_samples_per_second": 403.896,
|
342 |
+
"eval_steps_per_second": 3.19,
|
343 |
+
"step": 200
|
344 |
+
}
|
345 |
+
],
|
346 |
+
"logging_steps": 100,
|
347 |
+
"max_steps": 13077,
|
348 |
+
"num_input_tokens_seen": 0,
|
349 |
+
"num_train_epochs": 3,
|
350 |
+
"save_steps": 5,
|
351 |
+
"stateful_callbacks": {
|
352 |
+
"TrainerControl": {
|
353 |
+
"args": {
|
354 |
+
"should_epoch_stop": false,
|
355 |
+
"should_evaluate": false,
|
356 |
+
"should_log": false,
|
357 |
+
"should_save": true,
|
358 |
+
"should_training_stop": false
|
359 |
+
},
|
360 |
+
"attributes": {}
|
361 |
+
}
|
362 |
+
},
|
363 |
+
"total_flos": 0.0,
|
364 |
+
"train_batch_size": 128,
|
365 |
+
"trial_name": null,
|
366 |
+
"trial_params": null
|
367 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2abf963099d6edc7f64b07dc1ca3ddb71c22fbd76b9f34d095ea7490177c916c
|
3 |
+
size 5624
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|