sobamchan commited on
Commit
a1ddacf
·
verified ·
1 Parent(s): 4450eab

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,433 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:557850
10
+ - loss:MultipleNegativesRankingLoss
11
+ base_model: google-bert/bert-base-uncased
12
+ widget:
13
+ - source_sentence: A man is jumping unto his filthy bed.
14
+ sentences:
15
+ - A young male is looking at a newspaper while 2 females walks past him.
16
+ - The bed is dirty.
17
+ - The man is on the moon.
18
+ - source_sentence: A carefully balanced male stands on one foot near a clean ocean
19
+ beach area.
20
+ sentences:
21
+ - A man is ouside near the beach.
22
+ - Three policemen patrol the streets on bikes
23
+ - A man is sitting on his couch.
24
+ - source_sentence: The man is wearing a blue shirt.
25
+ sentences:
26
+ - Near the trashcan the man stood and smoked
27
+ - A man in a blue shirt leans on a wall beside a road with a blue van and red car
28
+ with water in the background.
29
+ - A man in a black shirt is playing a guitar.
30
+ - source_sentence: The girls are outdoors.
31
+ sentences:
32
+ - Two girls riding on an amusement part ride.
33
+ - a guy laughs while doing laundry
34
+ - Three girls are standing together in a room, one is listening, one is writing
35
+ on a wall and the third is talking to them.
36
+ - source_sentence: A construction worker peeking out of a manhole while his coworker
37
+ sits on the sidewalk smiling.
38
+ sentences:
39
+ - A worker is looking out of a manhole.
40
+ - A man is giving a presentation.
41
+ - The workers are both inside the manhole.
42
+ datasets:
43
+ - sentence-transformers/all-nli
44
+ pipeline_tag: sentence-similarity
45
+ library_name: sentence-transformers
46
+ ---
47
+
48
+ # SentenceTransformer based on google-bert/bert-base-uncased
49
+
50
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
51
+
52
+ ## Model Details
53
+
54
+ ### Model Description
55
+ - **Model Type:** Sentence Transformer
56
+ - **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
57
+ - **Maximum Sequence Length:** 256 tokens
58
+ - **Output Dimensionality:** 768 dimensions
59
+ - **Similarity Function:** Cosine Similarity
60
+ - **Training Dataset:**
61
+ - [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
62
+ - **Language:** en
63
+ <!-- - **License:** Unknown -->
64
+
65
+ ### Model Sources
66
+
67
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
68
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
69
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
70
+
71
+ ### Full Model Architecture
72
+
73
+ ```
74
+ SentenceTransformer(
75
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
76
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
77
+ (2): Normalize()
78
+ )
79
+ ```
80
+
81
+ ## Usage
82
+
83
+ ### Direct Usage (Sentence Transformers)
84
+
85
+ First install the Sentence Transformers library:
86
+
87
+ ```bash
88
+ pip install -U sentence-transformers
89
+ ```
90
+
91
+ Then you can load this model and run inference.
92
+ ```python
93
+ from sentence_transformers import SentenceTransformer
94
+
95
+ # Download from the 🤗 Hub
96
+ model = SentenceTransformer("sentence_transformers_model_id")
97
+ # Run inference
98
+ sentences = [
99
+ 'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
100
+ 'A worker is looking out of a manhole.',
101
+ 'The workers are both inside the manhole.',
102
+ ]
103
+ embeddings = model.encode(sentences)
104
+ print(embeddings.shape)
105
+ # [3, 768]
106
+
107
+ # Get the similarity scores for the embeddings
108
+ similarities = model.similarity(embeddings, embeddings)
109
+ print(similarities.shape)
110
+ # [3, 3]
111
+ ```
112
+
113
+ <!--
114
+ ### Direct Usage (Transformers)
115
+
116
+ <details><summary>Click to see the direct usage in Transformers</summary>
117
+
118
+ </details>
119
+ -->
120
+
121
+ <!--
122
+ ### Downstream Usage (Sentence Transformers)
123
+
124
+ You can finetune this model on your own dataset.
125
+
126
+ <details><summary>Click to expand</summary>
127
+
128
+ </details>
129
+ -->
130
+
131
+ <!--
132
+ ### Out-of-Scope Use
133
+
134
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
135
+ -->
136
+
137
+ <!--
138
+ ## Bias, Risks and Limitations
139
+
140
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
141
+ -->
142
+
143
+ <!--
144
+ ### Recommendations
145
+
146
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
147
+ -->
148
+
149
+ ## Training Details
150
+
151
+ ### Training Dataset
152
+
153
+ #### all-nli
154
+
155
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
156
+ * Size: 557,850 training samples
157
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
158
+ * Approximate statistics based on the first 1000 samples:
159
+ | | anchor | positive | negative |
160
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
161
+ | type | string | string | string |
162
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.81 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
163
+ * Samples:
164
+ | anchor | positive | negative |
165
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
166
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
167
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
168
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
169
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
170
+ ```json
171
+ {
172
+ "scale": 20.0,
173
+ "similarity_fct": "cos_sim"
174
+ }
175
+ ```
176
+
177
+ ### Evaluation Dataset
178
+
179
+ #### all-nli
180
+
181
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
182
+ * Size: 6,584 evaluation samples
183
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
184
+ * Approximate statistics based on the first 1000 samples:
185
+ | | anchor | positive | negative |
186
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
187
+ | type | string | string | string |
188
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.95 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.78 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.35 tokens</li><li>max: 29 tokens</li></ul> |
189
+ * Samples:
190
+ | anchor | positive | negative |
191
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
192
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
193
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
194
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
195
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
196
+ ```json
197
+ {
198
+ "scale": 20.0,
199
+ "similarity_fct": "cos_sim"
200
+ }
201
+ ```
202
+
203
+ ### Training Hyperparameters
204
+ #### Non-Default Hyperparameters
205
+
206
+ - `eval_strategy`: steps
207
+ - `per_device_train_batch_size`: 128
208
+ - `per_device_eval_batch_size`: 128
209
+ - `learning_rate`: 1e-05
210
+ - `warmup_ratio`: 0.1
211
+ - `batch_sampler`: no_duplicates
212
+
213
+ #### All Hyperparameters
214
+ <details><summary>Click to expand</summary>
215
+
216
+ - `overwrite_output_dir`: False
217
+ - `do_predict`: False
218
+ - `eval_strategy`: steps
219
+ - `prediction_loss_only`: True
220
+ - `per_device_train_batch_size`: 128
221
+ - `per_device_eval_batch_size`: 128
222
+ - `per_gpu_train_batch_size`: None
223
+ - `per_gpu_eval_batch_size`: None
224
+ - `gradient_accumulation_steps`: 1
225
+ - `eval_accumulation_steps`: None
226
+ - `torch_empty_cache_steps`: None
227
+ - `learning_rate`: 1e-05
228
+ - `weight_decay`: 0.0
229
+ - `adam_beta1`: 0.9
230
+ - `adam_beta2`: 0.999
231
+ - `adam_epsilon`: 1e-08
232
+ - `max_grad_norm`: 1.0
233
+ - `num_train_epochs`: 3
234
+ - `max_steps`: -1
235
+ - `lr_scheduler_type`: linear
236
+ - `lr_scheduler_kwargs`: {}
237
+ - `warmup_ratio`: 0.1
238
+ - `warmup_steps`: 0
239
+ - `log_level`: passive
240
+ - `log_level_replica`: warning
241
+ - `log_on_each_node`: True
242
+ - `logging_nan_inf_filter`: True
243
+ - `save_safetensors`: True
244
+ - `save_on_each_node`: False
245
+ - `save_only_model`: False
246
+ - `restore_callback_states_from_checkpoint`: False
247
+ - `no_cuda`: False
248
+ - `use_cpu`: False
249
+ - `use_mps_device`: False
250
+ - `seed`: 42
251
+ - `data_seed`: None
252
+ - `jit_mode_eval`: False
253
+ - `use_ipex`: False
254
+ - `bf16`: False
255
+ - `fp16`: False
256
+ - `fp16_opt_level`: O1
257
+ - `half_precision_backend`: auto
258
+ - `bf16_full_eval`: False
259
+ - `fp16_full_eval`: False
260
+ - `tf32`: None
261
+ - `local_rank`: 0
262
+ - `ddp_backend`: None
263
+ - `tpu_num_cores`: None
264
+ - `tpu_metrics_debug`: False
265
+ - `debug`: []
266
+ - `dataloader_drop_last`: False
267
+ - `dataloader_num_workers`: 0
268
+ - `dataloader_prefetch_factor`: None
269
+ - `past_index`: -1
270
+ - `disable_tqdm`: False
271
+ - `remove_unused_columns`: True
272
+ - `label_names`: None
273
+ - `load_best_model_at_end`: False
274
+ - `ignore_data_skip`: False
275
+ - `fsdp`: []
276
+ - `fsdp_min_num_params`: 0
277
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
278
+ - `fsdp_transformer_layer_cls_to_wrap`: None
279
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
280
+ - `deepspeed`: None
281
+ - `label_smoothing_factor`: 0.0
282
+ - `optim`: adamw_torch
283
+ - `optim_args`: None
284
+ - `adafactor`: False
285
+ - `group_by_length`: False
286
+ - `length_column_name`: length
287
+ - `ddp_find_unused_parameters`: None
288
+ - `ddp_bucket_cap_mb`: None
289
+ - `ddp_broadcast_buffers`: False
290
+ - `dataloader_pin_memory`: True
291
+ - `dataloader_persistent_workers`: False
292
+ - `skip_memory_metrics`: True
293
+ - `use_legacy_prediction_loop`: False
294
+ - `push_to_hub`: False
295
+ - `resume_from_checkpoint`: None
296
+ - `hub_model_id`: None
297
+ - `hub_strategy`: every_save
298
+ - `hub_private_repo`: None
299
+ - `hub_always_push`: False
300
+ - `gradient_checkpointing`: False
301
+ - `gradient_checkpointing_kwargs`: None
302
+ - `include_inputs_for_metrics`: False
303
+ - `include_for_metrics`: []
304
+ - `eval_do_concat_batches`: True
305
+ - `fp16_backend`: auto
306
+ - `push_to_hub_model_id`: None
307
+ - `push_to_hub_organization`: None
308
+ - `mp_parameters`:
309
+ - `auto_find_batch_size`: False
310
+ - `full_determinism`: False
311
+ - `torchdynamo`: None
312
+ - `ray_scope`: last
313
+ - `ddp_timeout`: 1800
314
+ - `torch_compile`: False
315
+ - `torch_compile_backend`: None
316
+ - `torch_compile_mode`: None
317
+ - `dispatch_batches`: None
318
+ - `split_batches`: None
319
+ - `include_tokens_per_second`: False
320
+ - `include_num_input_tokens_seen`: False
321
+ - `neftune_noise_alpha`: None
322
+ - `optim_target_modules`: None
323
+ - `batch_eval_metrics`: False
324
+ - `eval_on_start`: False
325
+ - `use_liger_kernel`: False
326
+ - `eval_use_gather_object`: False
327
+ - `average_tokens_across_devices`: False
328
+ - `prompts`: None
329
+ - `batch_sampler`: no_duplicates
330
+ - `multi_dataset_batch_sampler`: proportional
331
+
332
+ </details>
333
+
334
+ ### Training Logs
335
+ | Epoch | Step | Training Loss | Validation Loss |
336
+ |:------:|:----:|:-------------:|:---------------:|
337
+ | 0.0011 | 5 | - | 2.7554 |
338
+ | 0.0023 | 10 | - | 2.7506 |
339
+ | 0.0034 | 15 | - | 2.7424 |
340
+ | 0.0046 | 20 | - | 2.7309 |
341
+ | 0.0057 | 25 | - | 2.7160 |
342
+ | 0.0069 | 30 | - | 2.6975 |
343
+ | 0.0080 | 35 | - | 2.6757 |
344
+ | 0.0092 | 40 | - | 2.6502 |
345
+ | 0.0103 | 45 | - | 2.6214 |
346
+ | 0.0115 | 50 | - | 2.5893 |
347
+ | 0.0126 | 55 | - | 2.5538 |
348
+ | 0.0138 | 60 | - | 2.5145 |
349
+ | 0.0149 | 65 | - | 2.4726 |
350
+ | 0.0161 | 70 | - | 2.4282 |
351
+ | 0.0172 | 75 | - | 2.3795 |
352
+ | 0.0184 | 80 | - | 2.3272 |
353
+ | 0.0195 | 85 | - | 2.2712 |
354
+ | 0.0206 | 90 | - | 2.2120 |
355
+ | 0.0218 | 95 | - | 2.1501 |
356
+ | 0.0229 | 100 | 3.6197 | 2.0866 |
357
+ | 0.0241 | 105 | - | 2.0223 |
358
+ | 0.0252 | 110 | - | 1.9571 |
359
+ | 0.0264 | 115 | - | 1.8907 |
360
+ | 0.0275 | 120 | - | 1.8239 |
361
+ | 0.0287 | 125 | - | 1.7583 |
362
+ | 0.0298 | 130 | - | 1.6938 |
363
+ | 0.0310 | 135 | - | 1.6316 |
364
+ | 0.0321 | 140 | - | 1.5719 |
365
+ | 0.0333 | 145 | - | 1.5148 |
366
+ | 0.0344 | 150 | - | 1.4598 |
367
+ | 0.0356 | 155 | - | 1.4081 |
368
+ | 0.0367 | 160 | - | 1.3612 |
369
+ | 0.0379 | 165 | - | 1.3182 |
370
+ | 0.0390 | 170 | - | 1.2803 |
371
+ | 0.0401 | 175 | - | 1.2463 |
372
+ | 0.0413 | 180 | - | 1.2160 |
373
+ | 0.0424 | 185 | - | 1.1895 |
374
+ | 0.0436 | 190 | - | 1.1654 |
375
+ | 0.0447 | 195 | - | 1.1435 |
376
+ | 0.0459 | 200 | 2.292 | 1.1240 |
377
+
378
+
379
+ ### Framework Versions
380
+ - Python: 3.12.8
381
+ - Sentence Transformers: 3.4.1
382
+ - Transformers: 4.48.3
383
+ - PyTorch: 2.2.0+cu121
384
+ - Accelerate: 1.3.0
385
+ - Datasets: 3.2.0
386
+ - Tokenizers: 0.21.0
387
+
388
+ ## Citation
389
+
390
+ ### BibTeX
391
+
392
+ #### Sentence Transformers
393
+ ```bibtex
394
+ @inproceedings{reimers-2019-sentence-bert,
395
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
396
+ author = "Reimers, Nils and Gurevych, Iryna",
397
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
398
+ month = "11",
399
+ year = "2019",
400
+ publisher = "Association for Computational Linguistics",
401
+ url = "https://arxiv.org/abs/1908.10084",
402
+ }
403
+ ```
404
+
405
+ #### MultipleNegativesRankingLoss
406
+ ```bibtex
407
+ @misc{henderson2017efficient,
408
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
409
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
410
+ year={2017},
411
+ eprint={1705.00652},
412
+ archivePrefix={arXiv},
413
+ primaryClass={cs.CL}
414
+ }
415
+ ```
416
+
417
+ <!--
418
+ ## Glossary
419
+
420
+ *Clearly define terms in order to be accessible across audiences.*
421
+ -->
422
+
423
+ <!--
424
+ ## Model Card Authors
425
+
426
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
427
+ -->
428
+
429
+ <!--
430
+ ## Model Card Contact
431
+
432
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
433
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google-bert/bert-base-uncased",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.48.3",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.3",
5
+ "pytorch": "2.2.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c630911ec73fc100013ec51d08e1a5d5533c650218a8d99b871d80a9e18a3813
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b6bed59d6671b7ff1648ef6cc566136ba3e270fadbd78c498c91c1d838c7350
3
+ size 871297978
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf179cb0993a904f7fcd3d8311b9eb2c56c8e8737668a866210052c53f68bec8
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4eb90646db40a69d634771e2b637e09273133952e702d4de1c2f4b1ced192661
3
+ size 1064
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 256,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "BertTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
trainer_state.json ADDED
@@ -0,0 +1,367 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.045882083046570314,
5
+ "eval_steps": 5,
6
+ "global_step": 200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0011470520761642578,
13
+ "eval_loss": 2.755366325378418,
14
+ "eval_runtime": 14.0088,
15
+ "eval_samples_per_second": 469.989,
16
+ "eval_steps_per_second": 3.712,
17
+ "step": 5
18
+ },
19
+ {
20
+ "epoch": 0.0022941041523285156,
21
+ "eval_loss": 2.750617027282715,
22
+ "eval_runtime": 14.0654,
23
+ "eval_samples_per_second": 468.099,
24
+ "eval_steps_per_second": 3.697,
25
+ "step": 10
26
+ },
27
+ {
28
+ "epoch": 0.0034411562284927736,
29
+ "eval_loss": 2.7424304485321045,
30
+ "eval_runtime": 14.1186,
31
+ "eval_samples_per_second": 466.336,
32
+ "eval_steps_per_second": 3.683,
33
+ "step": 15
34
+ },
35
+ {
36
+ "epoch": 0.004588208304657031,
37
+ "eval_loss": 2.730889081954956,
38
+ "eval_runtime": 14.2451,
39
+ "eval_samples_per_second": 462.193,
40
+ "eval_steps_per_second": 3.65,
41
+ "step": 20
42
+ },
43
+ {
44
+ "epoch": 0.005735260380821289,
45
+ "eval_loss": 2.7159576416015625,
46
+ "eval_runtime": 14.245,
47
+ "eval_samples_per_second": 462.199,
48
+ "eval_steps_per_second": 3.65,
49
+ "step": 25
50
+ },
51
+ {
52
+ "epoch": 0.006882312456985547,
53
+ "eval_loss": 2.6975343227386475,
54
+ "eval_runtime": 14.3448,
55
+ "eval_samples_per_second": 458.981,
56
+ "eval_steps_per_second": 3.625,
57
+ "step": 30
58
+ },
59
+ {
60
+ "epoch": 0.008029364533149804,
61
+ "eval_loss": 2.675693988800049,
62
+ "eval_runtime": 16.965,
63
+ "eval_samples_per_second": 388.094,
64
+ "eval_steps_per_second": 3.065,
65
+ "step": 35
66
+ },
67
+ {
68
+ "epoch": 0.009176416609314062,
69
+ "eval_loss": 2.650242328643799,
70
+ "eval_runtime": 14.2414,
71
+ "eval_samples_per_second": 462.315,
72
+ "eval_steps_per_second": 3.651,
73
+ "step": 40
74
+ },
75
+ {
76
+ "epoch": 0.01032346868547832,
77
+ "eval_loss": 2.6213560104370117,
78
+ "eval_runtime": 14.4168,
79
+ "eval_samples_per_second": 456.689,
80
+ "eval_steps_per_second": 3.607,
81
+ "step": 45
82
+ },
83
+ {
84
+ "epoch": 0.011470520761642579,
85
+ "eval_loss": 2.5892951488494873,
86
+ "eval_runtime": 14.3332,
87
+ "eval_samples_per_second": 459.353,
88
+ "eval_steps_per_second": 3.628,
89
+ "step": 50
90
+ },
91
+ {
92
+ "epoch": 0.012617572837806837,
93
+ "eval_loss": 2.5538384914398193,
94
+ "eval_runtime": 14.4067,
95
+ "eval_samples_per_second": 457.01,
96
+ "eval_steps_per_second": 3.609,
97
+ "step": 55
98
+ },
99
+ {
100
+ "epoch": 0.013764624913971095,
101
+ "eval_loss": 2.51452374458313,
102
+ "eval_runtime": 14.4948,
103
+ "eval_samples_per_second": 454.233,
104
+ "eval_steps_per_second": 3.588,
105
+ "step": 60
106
+ },
107
+ {
108
+ "epoch": 0.014911676990135353,
109
+ "eval_loss": 2.4726295471191406,
110
+ "eval_runtime": 14.3162,
111
+ "eval_samples_per_second": 459.898,
112
+ "eval_steps_per_second": 3.632,
113
+ "step": 65
114
+ },
115
+ {
116
+ "epoch": 0.01605872906629961,
117
+ "eval_loss": 2.428196668624878,
118
+ "eval_runtime": 14.3204,
119
+ "eval_samples_per_second": 459.763,
120
+ "eval_steps_per_second": 3.631,
121
+ "step": 70
122
+ },
123
+ {
124
+ "epoch": 0.017205781142463867,
125
+ "eval_loss": 2.379453659057617,
126
+ "eval_runtime": 14.3796,
127
+ "eval_samples_per_second": 457.872,
128
+ "eval_steps_per_second": 3.616,
129
+ "step": 75
130
+ },
131
+ {
132
+ "epoch": 0.018352833218628125,
133
+ "eval_loss": 2.327221393585205,
134
+ "eval_runtime": 14.3415,
135
+ "eval_samples_per_second": 459.089,
136
+ "eval_steps_per_second": 3.626,
137
+ "step": 80
138
+ },
139
+ {
140
+ "epoch": 0.019499885294792383,
141
+ "eval_loss": 2.2712388038635254,
142
+ "eval_runtime": 14.462,
143
+ "eval_samples_per_second": 455.263,
144
+ "eval_steps_per_second": 3.596,
145
+ "step": 85
146
+ },
147
+ {
148
+ "epoch": 0.02064693737095664,
149
+ "eval_loss": 2.2120068073272705,
150
+ "eval_runtime": 14.334,
151
+ "eval_samples_per_second": 459.326,
152
+ "eval_steps_per_second": 3.628,
153
+ "step": 90
154
+ },
155
+ {
156
+ "epoch": 0.0217939894471209,
157
+ "eval_loss": 2.1501331329345703,
158
+ "eval_runtime": 14.3506,
159
+ "eval_samples_per_second": 458.796,
160
+ "eval_steps_per_second": 3.624,
161
+ "step": 95
162
+ },
163
+ {
164
+ "epoch": 0.022941041523285157,
165
+ "grad_norm": 19.895355224609375,
166
+ "learning_rate": 7.645259938837921e-07,
167
+ "loss": 3.6197,
168
+ "step": 100
169
+ },
170
+ {
171
+ "epoch": 0.022941041523285157,
172
+ "eval_loss": 2.086596727371216,
173
+ "eval_runtime": 16.6465,
174
+ "eval_samples_per_second": 395.519,
175
+ "eval_steps_per_second": 3.124,
176
+ "step": 100
177
+ },
178
+ {
179
+ "epoch": 0.024088093599449415,
180
+ "eval_loss": 2.0223236083984375,
181
+ "eval_runtime": 14.471,
182
+ "eval_samples_per_second": 454.979,
183
+ "eval_steps_per_second": 3.593,
184
+ "step": 105
185
+ },
186
+ {
187
+ "epoch": 0.025235145675613673,
188
+ "eval_loss": 1.9571231603622437,
189
+ "eval_runtime": 14.3783,
190
+ "eval_samples_per_second": 457.913,
191
+ "eval_steps_per_second": 3.617,
192
+ "step": 110
193
+ },
194
+ {
195
+ "epoch": 0.02638219775177793,
196
+ "eval_loss": 1.890655517578125,
197
+ "eval_runtime": 14.288,
198
+ "eval_samples_per_second": 460.805,
199
+ "eval_steps_per_second": 3.639,
200
+ "step": 115
201
+ },
202
+ {
203
+ "epoch": 0.02752924982794219,
204
+ "eval_loss": 1.823920488357544,
205
+ "eval_runtime": 14.3764,
206
+ "eval_samples_per_second": 457.972,
207
+ "eval_steps_per_second": 3.617,
208
+ "step": 120
209
+ },
210
+ {
211
+ "epoch": 0.028676301904106447,
212
+ "eval_loss": 1.758331298828125,
213
+ "eval_runtime": 14.2666,
214
+ "eval_samples_per_second": 461.499,
215
+ "eval_steps_per_second": 3.645,
216
+ "step": 125
217
+ },
218
+ {
219
+ "epoch": 0.029823353980270705,
220
+ "eval_loss": 1.6937522888183594,
221
+ "eval_runtime": 14.2522,
222
+ "eval_samples_per_second": 461.963,
223
+ "eval_steps_per_second": 3.649,
224
+ "step": 130
225
+ },
226
+ {
227
+ "epoch": 0.030970406056434963,
228
+ "eval_loss": 1.6316019296646118,
229
+ "eval_runtime": 16.3104,
230
+ "eval_samples_per_second": 403.67,
231
+ "eval_steps_per_second": 3.188,
232
+ "step": 135
233
+ },
234
+ {
235
+ "epoch": 0.03211745813259922,
236
+ "eval_loss": 1.571895718574524,
237
+ "eval_runtime": 14.2422,
238
+ "eval_samples_per_second": 462.288,
239
+ "eval_steps_per_second": 3.651,
240
+ "step": 140
241
+ },
242
+ {
243
+ "epoch": 0.033264510208763476,
244
+ "eval_loss": 1.5148202180862427,
245
+ "eval_runtime": 14.3624,
246
+ "eval_samples_per_second": 458.418,
247
+ "eval_steps_per_second": 3.621,
248
+ "step": 145
249
+ },
250
+ {
251
+ "epoch": 0.034411562284927734,
252
+ "eval_loss": 1.459762454032898,
253
+ "eval_runtime": 14.3035,
254
+ "eval_samples_per_second": 460.308,
255
+ "eval_steps_per_second": 3.635,
256
+ "step": 150
257
+ },
258
+ {
259
+ "epoch": 0.03555861436109199,
260
+ "eval_loss": 1.4081143140792847,
261
+ "eval_runtime": 14.2988,
262
+ "eval_samples_per_second": 460.46,
263
+ "eval_steps_per_second": 3.637,
264
+ "step": 155
265
+ },
266
+ {
267
+ "epoch": 0.03670566643725625,
268
+ "eval_loss": 1.3612124919891357,
269
+ "eval_runtime": 14.2569,
270
+ "eval_samples_per_second": 461.812,
271
+ "eval_steps_per_second": 3.647,
272
+ "step": 160
273
+ },
274
+ {
275
+ "epoch": 0.03785271851342051,
276
+ "eval_loss": 1.318212866783142,
277
+ "eval_runtime": 14.282,
278
+ "eval_samples_per_second": 460.999,
279
+ "eval_steps_per_second": 3.641,
280
+ "step": 165
281
+ },
282
+ {
283
+ "epoch": 0.038999770589584766,
284
+ "eval_loss": 1.2802687883377075,
285
+ "eval_runtime": 14.4058,
286
+ "eval_samples_per_second": 457.038,
287
+ "eval_steps_per_second": 3.61,
288
+ "step": 170
289
+ },
290
+ {
291
+ "epoch": 0.040146822665749024,
292
+ "eval_loss": 1.246294617652893,
293
+ "eval_runtime": 14.2804,
294
+ "eval_samples_per_second": 461.051,
295
+ "eval_steps_per_second": 3.641,
296
+ "step": 175
297
+ },
298
+ {
299
+ "epoch": 0.04129387474191328,
300
+ "eval_loss": 1.2160167694091797,
301
+ "eval_runtime": 14.3449,
302
+ "eval_samples_per_second": 458.977,
303
+ "eval_steps_per_second": 3.625,
304
+ "step": 180
305
+ },
306
+ {
307
+ "epoch": 0.04244092681807754,
308
+ "eval_loss": 1.189509630203247,
309
+ "eval_runtime": 14.2361,
310
+ "eval_samples_per_second": 462.486,
311
+ "eval_steps_per_second": 3.653,
312
+ "step": 185
313
+ },
314
+ {
315
+ "epoch": 0.0435879788942418,
316
+ "eval_loss": 1.1653709411621094,
317
+ "eval_runtime": 14.3748,
318
+ "eval_samples_per_second": 458.025,
319
+ "eval_steps_per_second": 3.617,
320
+ "step": 190
321
+ },
322
+ {
323
+ "epoch": 0.044735030970406056,
324
+ "eval_loss": 1.143513798713684,
325
+ "eval_runtime": 14.25,
326
+ "eval_samples_per_second": 462.035,
327
+ "eval_steps_per_second": 3.649,
328
+ "step": 195
329
+ },
330
+ {
331
+ "epoch": 0.045882083046570314,
332
+ "grad_norm": 8.192963600158691,
333
+ "learning_rate": 1.5290519877675841e-06,
334
+ "loss": 2.292,
335
+ "step": 200
336
+ },
337
+ {
338
+ "epoch": 0.045882083046570314,
339
+ "eval_loss": 1.1239805221557617,
340
+ "eval_runtime": 16.3012,
341
+ "eval_samples_per_second": 403.896,
342
+ "eval_steps_per_second": 3.19,
343
+ "step": 200
344
+ }
345
+ ],
346
+ "logging_steps": 100,
347
+ "max_steps": 13077,
348
+ "num_input_tokens_seen": 0,
349
+ "num_train_epochs": 3,
350
+ "save_steps": 5,
351
+ "stateful_callbacks": {
352
+ "TrainerControl": {
353
+ "args": {
354
+ "should_epoch_stop": false,
355
+ "should_evaluate": false,
356
+ "should_log": false,
357
+ "should_save": true,
358
+ "should_training_stop": false
359
+ },
360
+ "attributes": {}
361
+ }
362
+ },
363
+ "total_flos": 0.0,
364
+ "train_batch_size": 128,
365
+ "trial_name": null,
366
+ "trial_params": null
367
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2abf963099d6edc7f64b07dc1ca3ddb71c22fbd76b9f34d095ea7490177c916c
3
+ size 5624
vocab.txt ADDED
The diff for this file is too large to render. See raw diff