--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-cased tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: what results: [] --- # what This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2120 - F1: 0.7297 - Accuracy: 0.9685 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 0.0004 | 1.0 | 477 | 0.2253 | 0.6857 | 0.9654 | | 0.0003 | 2.0 | 954 | 0.2222 | 0.7297 | 0.9685 | | 0.0005 | 3.0 | 1431 | 0.2120 | 0.7297 | 0.9685 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3