sidnarsipur commited on
Commit
8bce849
·
verified ·
1 Parent(s): 95042cd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -20
README.md CHANGED
@@ -22,34 +22,46 @@ inference: true
22
  should probably proofread and complete it, then remove this comment. -->
23
 
24
 
25
- # controlnet-sidnarsipur/controlnet_rough
26
 
27
- These are controlnet weights trained on stabilityai/stable-diffusion-2-1-base with new type of conditioning.
28
- You can find some example images below.
29
 
30
- prompt: Roughness Map
31
- ![images_0)](./images_0.png)
32
- prompt: Roughness Map
33
- ![images_1)](./images_1.png)
34
- prompt: Roughness Map
35
- ![images_2)](./images_2.png)
36
- prompt: Roughness Map
37
- ![images_3)](./images_3.png)
38
 
 
 
39
 
 
 
 
 
40
 
41
- ## Intended uses & limitations
 
 
42
 
43
- #### How to use
 
44
 
45
- ```python
46
- # TODO: add an example code snippet for running this diffusion pipeline
47
- ```
 
48
 
49
- #### Limitations and bias
 
 
50
 
51
- [TODO: provide examples of latent issues and potential remediations]
 
52
 
53
- ## Training details
 
54
 
55
- [TODO: describe the data used to train the model]
 
 
 
 
 
 
 
22
  should probably proofread and complete it, then remove this comment. -->
23
 
24
 
25
+ # controlnet_rough
26
 
27
+ Generate a roughness map from a photograph or basecolor (albedo) map.
 
28
 
29
+ # Usage
 
 
 
 
 
 
 
30
 
31
+ ```
32
+ import argparse
33
 
34
+ from PIL import Image
35
+ from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
36
+ from diffusers.utils import load_image
37
+ import torch
38
 
39
+ parser = argparse.ArgumentParser(description="Args for parser")
40
+ parser.add_argument("--seed", type=int, default=1, help="Seed for inference")
41
+ args = parser.parse_args()
42
 
43
+ base_model_path = "stabilityai/stable-diffusion-2-1-base"
44
+ controlnet_path = "sidnarsipur/controlnet_rough"
45
 
46
+ controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
47
+ pipe = StableDiffusionControlNetPipeline.from_pretrained(
48
+ base_model_path, controlnet=controlnet, torch_dtype=torch.float16
49
+ )
50
 
51
+ pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
52
+ pipe.enable_xformers_memory_efficient_attention()
53
+ pipe.enable_model_cpu_offload()
54
 
55
+ control_image = load_image("inference/basecolor.png") #Change based on your image path
56
+ prompt = "Roughness Map" #Don't change!
57
 
58
+ if control_image.size[0] > 2048 or control_image.size[1] > 2048: #Optional
59
+ control_image = control_image.resize((control_image.size[0] // 2, control_image.size[1] // 2))
60
 
61
+ generator = torch.manual_seed(args.seed)
62
+
63
+ image = pipe(
64
+ prompt, num_inference_steps=50, generator=generator, image=control_image
65
+ ).images[0]
66
+ image.save("inference/normal.png")
67
+ ```