shogun-the-great commited on
Commit
57d09ce
·
verified ·
1 Parent(s): 4fd803d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -162
README.md CHANGED
@@ -1,199 +1,86 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
 
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
114
 
115
- #### Factors
 
 
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
194
 
195
- [More Information Needed]
 
 
 
196
 
197
- ## Model Card Contact
 
 
 
198
 
199
- [More Information Needed]
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - phishing-detection
5
+ - binary-classification
6
+ - bert
7
+ - nlp
8
  ---
9
 
10
+ # Model Card for Fine-tuned BERT-Base-Uncased on Phishing Site Classification
 
 
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
+ This model is a fine-tuned version of [BERT-Base-Uncased](https://huggingface.co/google-bert/bert-base-uncased) for phishing site classification. The model predicts whether a website is classified as "Safe" or "Not Safe" based on textual input.
 
 
 
 
 
 
 
 
 
 
17
 
18
+ - **Developed by:** [shogun-the-great](https://huggingface.co/shogun-the-great)
19
+ - **Model type:** Binary Classification (Safe vs Not Safe)
20
+ - **Language(s):** English
21
+ - **License:** Apache-2.0 (or specify your license)
22
+ - **Finetuned from model:** `google/bert-base-uncased`
23
+ - ** **
24
 
25
+ ### Model Sources
26
 
27
+ - **Dataset:** [shawhin/phishing-site-classification](https://huggingface.co/datasets/shawhin/phishing-site-classification)
 
 
28
 
29
  ## Uses
30
 
 
 
31
  ### Direct Use
32
 
33
+ This model can be directly used for phishing detection by classifying text into two categories: "Safe" and "Not Safe." Typical use cases include:
 
 
34
 
35
+ - Integrating with browser extensions for real-time website classification.
36
+ - Analyzing textual data for phishing indicators.
37
 
38
+ ### Downstream Use
39
 
40
+ Users can fine-tune the model further for specific binary classification tasks or for datasets with similar domains.
41
 
42
  ### Out-of-Scope Use
43
 
44
+ This model might not perform well for:
45
+ - Non-English text.
46
+ - Adversarial phishing attacks or heavily obfuscated text.
47
+ - Tasks unrelated to text-based classification.
48
 
49
  ## Bias, Risks, and Limitations
50
 
51
+ ### Bias
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
+ The model's predictions are influenced by the dataset used during fine-tuning. If the training data contains biases, these may reflect in the predictions.
54
 
55
+ ### Risks
56
 
57
+ - False positives: Legitimate websites flagged as phishing.
58
+ - False negatives: Some phishing sites might not be detected.
59
+ - Potential vulnerabilities to adversarial examples.
60
 
61
+ ### Recommendations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
+ - Regularly update the dataset and model to stay aligned with emerging phishing patterns.
64
+ - Use in combination with other security measures for robust phishing detection.
65
 
66
+ ## How to Get Started with the Model
67
 
68
+ You can load the fine-tuned model directly from the Hugging Face Hub:
69
 
70
+ ```python
71
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
72
 
73
+ # Load the tokenizer and model from Hugging Face Hub
74
+ model_name = "shogun-the-great/finetuned-bert-phishing-site-classification"
75
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
76
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
77
 
78
+ # Example usage
79
+ text = "Enter your login credentials to claim a free reward!"
80
+ inputs = tokenizer(text, return_tensors="pt", truncation=True)
81
+ outputs = model(**inputs)
82
 
83
+ # Get the predicted label
84
+ logits = outputs.logits
85
+ prediction = logits.argmax(dim=-1).item()
86
+ print("Prediction:", "Not Safe" if prediction == 1 else "Safe")