--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: vit-lr-0.0001 results: [] --- # vit-lr-0.0001 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the skin-cancer dataset. It achieves the following results on the evaluation set: - Loss: 0.5187 - Accuracy: 0.8360 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6008 | 0.31 | 100 | 0.5998 | 0.7836 | | 0.5779 | 0.62 | 200 | 0.6118 | 0.7833 | | 0.6891 | 0.93 | 300 | 0.5814 | 0.7777 | | 0.3535 | 1.25 | 400 | 0.5594 | 0.7933 | | 0.4055 | 1.56 | 500 | 0.5719 | 0.8135 | | 0.2471 | 1.87 | 600 | 0.5536 | 0.7944 | | 0.171 | 2.18 | 700 | 0.5376 | 0.8391 | | 0.2159 | 2.49 | 800 | 0.5187 | 0.8360 | | 0.1659 | 2.8 | 900 | 0.5849 | 0.8318 | | 0.0554 | 3.12 | 1000 | 0.5457 | 0.8544 | | 0.1125 | 3.43 | 1100 | 0.7324 | 0.8318 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2