Model save
Browse files
README.md
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: bert-base-uncased
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: fine-tuned-bert-CBT
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# fine-tuned-bert-CBT
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.9580
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 2e-05
|
39 |
+
- train_batch_size: 8
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- num_epochs: 3
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
49 |
+
|:-------------:|:------:|:----:|:---------------:|
|
50 |
+
| 2.6996 | 0.0278 | 10 | 2.5932 |
|
51 |
+
| 2.5659 | 0.0556 | 20 | 2.4949 |
|
52 |
+
| 2.5146 | 0.0833 | 30 | 2.3969 |
|
53 |
+
| 2.4268 | 0.1111 | 40 | 2.3803 |
|
54 |
+
| 2.3637 | 0.1389 | 50 | 2.2703 |
|
55 |
+
| 2.2599 | 0.1667 | 60 | 2.2429 |
|
56 |
+
| 2.2562 | 0.1944 | 70 | 2.1078 |
|
57 |
+
| 2.0763 | 0.2222 | 80 | 2.0618 |
|
58 |
+
| 2.0285 | 0.25 | 90 | 2.0001 |
|
59 |
+
| 2.0964 | 0.2778 | 100 | 1.9234 |
|
60 |
+
| 1.8736 | 0.3056 | 110 | 1.8622 |
|
61 |
+
| 1.9762 | 0.3333 | 120 | 1.8228 |
|
62 |
+
| 1.8524 | 0.3611 | 130 | 1.7528 |
|
63 |
+
| 1.7582 | 0.3889 | 140 | 1.6850 |
|
64 |
+
| 1.666 | 0.4167 | 150 | 1.6393 |
|
65 |
+
| 1.6081 | 0.4444 | 160 | 1.5788 |
|
66 |
+
| 1.5763 | 0.4722 | 170 | 1.5264 |
|
67 |
+
| 1.5569 | 0.5 | 180 | 1.5205 |
|
68 |
+
| 1.5338 | 0.5278 | 190 | 1.4746 |
|
69 |
+
| 1.3994 | 0.5556 | 200 | 1.4834 |
|
70 |
+
| 1.4633 | 0.5833 | 210 | 1.4261 |
|
71 |
+
| 1.5346 | 0.6111 | 220 | 1.3530 |
|
72 |
+
| 1.4419 | 0.6389 | 230 | 1.3255 |
|
73 |
+
| 1.2908 | 0.6667 | 240 | 1.3178 |
|
74 |
+
| 1.4339 | 0.6944 | 250 | 1.3066 |
|
75 |
+
| 1.2745 | 0.7222 | 260 | 1.2494 |
|
76 |
+
| 1.3522 | 0.75 | 270 | 1.2489 |
|
77 |
+
| 1.2186 | 0.7778 | 280 | 1.2322 |
|
78 |
+
| 1.2945 | 0.8056 | 290 | 1.1780 |
|
79 |
+
| 1.3717 | 0.8333 | 300 | 1.2243 |
|
80 |
+
| 1.2835 | 0.8611 | 310 | 1.2065 |
|
81 |
+
| 1.2402 | 0.8889 | 320 | 1.1678 |
|
82 |
+
| 1.0937 | 0.9167 | 330 | 1.1325 |
|
83 |
+
| 1.2552 | 0.9444 | 340 | 1.1202 |
|
84 |
+
| 1.1272 | 0.9722 | 350 | 1.1032 |
|
85 |
+
| 1.1746 | 1.0 | 360 | 1.0993 |
|
86 |
+
| 1.1314 | 1.0278 | 370 | 1.0908 |
|
87 |
+
| 1.1143 | 1.0556 | 380 | 1.0849 |
|
88 |
+
| 0.9685 | 1.0833 | 390 | 1.0890 |
|
89 |
+
| 0.8647 | 1.1111 | 400 | 1.1004 |
|
90 |
+
| 0.8987 | 1.1389 | 410 | 1.0898 |
|
91 |
+
| 0.8619 | 1.1667 | 420 | 1.1206 |
|
92 |
+
| 0.8827 | 1.1944 | 430 | 1.0759 |
|
93 |
+
| 0.9164 | 1.2222 | 440 | 1.0875 |
|
94 |
+
| 1.1161 | 1.25 | 450 | 1.0763 |
|
95 |
+
| 0.8902 | 1.2778 | 460 | 1.0525 |
|
96 |
+
| 0.9228 | 1.3056 | 470 | 1.0476 |
|
97 |
+
| 0.789 | 1.3333 | 480 | 1.0377 |
|
98 |
+
| 0.8984 | 1.3611 | 490 | 1.0522 |
|
99 |
+
| 1.065 | 1.3889 | 500 | 1.0215 |
|
100 |
+
| 0.7046 | 1.4167 | 510 | 1.0186 |
|
101 |
+
| 0.9612 | 1.4444 | 520 | 1.0143 |
|
102 |
+
| 0.7705 | 1.4722 | 530 | 1.0207 |
|
103 |
+
| 0.7768 | 1.5 | 540 | 1.0060 |
|
104 |
+
| 1.0041 | 1.5278 | 550 | 1.0296 |
|
105 |
+
| 1.0711 | 1.5556 | 560 | 1.0030 |
|
106 |
+
| 0.6894 | 1.5833 | 570 | 1.0044 |
|
107 |
+
| 1.1434 | 1.6111 | 580 | 0.9944 |
|
108 |
+
| 0.9194 | 1.6389 | 590 | 0.9822 |
|
109 |
+
| 0.8456 | 1.6667 | 600 | 0.9993 |
|
110 |
+
| 0.8691 | 1.6944 | 610 | 0.9917 |
|
111 |
+
| 0.8099 | 1.7222 | 620 | 0.9836 |
|
112 |
+
| 0.9797 | 1.75 | 630 | 0.9814 |
|
113 |
+
| 0.9307 | 1.7778 | 640 | 0.9790 |
|
114 |
+
| 0.6684 | 1.8056 | 650 | 0.9704 |
|
115 |
+
| 0.8533 | 1.8333 | 660 | 0.9869 |
|
116 |
+
| 0.8324 | 1.8611 | 670 | 0.9658 |
|
117 |
+
| 0.7872 | 1.8889 | 680 | 0.9683 |
|
118 |
+
| 0.6827 | 1.9167 | 690 | 0.9857 |
|
119 |
+
| 1.0274 | 1.9444 | 700 | 0.9893 |
|
120 |
+
| 0.8892 | 1.9722 | 710 | 0.9738 |
|
121 |
+
| 0.7447 | 2.0 | 720 | 0.9732 |
|
122 |
+
| 0.7072 | 2.0278 | 730 | 0.9748 |
|
123 |
+
| 0.7205 | 2.0556 | 740 | 0.9637 |
|
124 |
+
| 0.6102 | 2.0833 | 750 | 0.9647 |
|
125 |
+
| 0.7017 | 2.1111 | 760 | 0.9520 |
|
126 |
+
| 0.7374 | 2.1389 | 770 | 0.9495 |
|
127 |
+
| 0.6856 | 2.1667 | 780 | 0.9455 |
|
128 |
+
| 0.4585 | 2.1944 | 790 | 0.9481 |
|
129 |
+
| 0.5872 | 2.2222 | 800 | 0.9494 |
|
130 |
+
| 0.7054 | 2.25 | 810 | 0.9457 |
|
131 |
+
| 0.7 | 2.2778 | 820 | 0.9557 |
|
132 |
+
| 0.5781 | 2.3056 | 830 | 0.9579 |
|
133 |
+
| 0.6319 | 2.3333 | 840 | 0.9677 |
|
134 |
+
| 0.5814 | 2.3611 | 850 | 0.9705 |
|
135 |
+
| 0.5985 | 2.3889 | 860 | 0.9614 |
|
136 |
+
| 0.729 | 2.4167 | 870 | 0.9536 |
|
137 |
+
| 0.6084 | 2.4444 | 880 | 0.9499 |
|
138 |
+
| 0.755 | 2.4722 | 890 | 0.9594 |
|
139 |
+
| 0.4991 | 2.5 | 900 | 0.9782 |
|
140 |
+
| 0.5469 | 2.5278 | 910 | 0.9928 |
|
141 |
+
| 0.6299 | 2.5556 | 920 | 0.9875 |
|
142 |
+
| 0.5911 | 2.5833 | 930 | 0.9720 |
|
143 |
+
| 0.4386 | 2.6111 | 940 | 0.9701 |
|
144 |
+
| 0.5477 | 2.6389 | 950 | 0.9695 |
|
145 |
+
| 0.6532 | 2.6667 | 960 | 0.9723 |
|
146 |
+
| 0.6322 | 2.6944 | 970 | 0.9710 |
|
147 |
+
| 0.4968 | 2.7222 | 980 | 0.9701 |
|
148 |
+
| 0.5498 | 2.75 | 990 | 0.9708 |
|
149 |
+
| 0.746 | 2.7778 | 1000 | 0.9697 |
|
150 |
+
| 0.5654 | 2.8056 | 1010 | 0.9698 |
|
151 |
+
| 0.5468 | 2.8333 | 1020 | 0.9655 |
|
152 |
+
| 0.6086 | 2.8611 | 1030 | 0.9643 |
|
153 |
+
| 0.6928 | 2.8889 | 1040 | 0.9612 |
|
154 |
+
| 0.4775 | 2.9167 | 1050 | 0.9585 |
|
155 |
+
| 0.5934 | 2.9444 | 1060 | 0.9579 |
|
156 |
+
| 0.6645 | 2.9722 | 1070 | 0.9580 |
|
157 |
+
| 0.5721 | 3.0 | 1080 | 0.9580 |
|
158 |
+
|
159 |
+
|
160 |
+
### Framework versions
|
161 |
+
|
162 |
+
- Transformers 4.47.0
|
163 |
+
- Pytorch 2.5.1+cu121
|
164 |
+
- Datasets 3.1.0
|
165 |
+
- Tokenizers 0.21.0
|