--- library_name: transformers license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: deberta-v3-base-deu-DAPT-finetuned-10-epochs results: [] --- # deberta-v3-base-deu-DAPT-finetuned-10-epochs This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3382 - F1: 0.4391 - Roc Auc: 0.6795 - Accuracy: 0.4908 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.4598 | 1.0 | 95 | 0.4152 | 0.0250 | 0.5067 | 0.2718 | | 0.3605 | 2.0 | 190 | 0.3766 | 0.3285 | 0.6368 | 0.4512 | | 0.3028 | 3.0 | 285 | 0.3548 | 0.3942 | 0.6625 | 0.4894 | | 0.2871 | 4.0 | 380 | 0.3329 | 0.4127 | 0.6619 | 0.4776 | | 0.2394 | 5.0 | 475 | 0.3294 | 0.4259 | 0.6738 | 0.4855 | | 0.2221 | 6.0 | 570 | 0.3335 | 0.4190 | 0.6671 | 0.4947 | | 0.2161 | 7.0 | 665 | 0.3368 | 0.4178 | 0.6646 | 0.4868 | | 0.1914 | 8.0 | 760 | 0.3367 | 0.4346 | 0.6809 | 0.4974 | | 0.1845 | 9.0 | 855 | 0.3382 | 0.4391 | 0.6795 | 0.4908 | | 0.1824 | 10.0 | 950 | 0.3373 | 0.4319 | 0.6782 | 0.4921 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0