Model save
Browse files- README.md +82 -0
- adapter_model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
base_model: microsoft/swin-large-patch4-window7-224-in22k
|
7 |
+
datasets:
|
8 |
+
- medmnist-v2
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
- precision
|
12 |
+
- recall
|
13 |
+
- f1
|
14 |
+
model-index:
|
15 |
+
- name: organamnist-swin-base-finetuned
|
16 |
+
results: []
|
17 |
+
---
|
18 |
+
|
19 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
20 |
+
should probably proofread and complete it, then remove this comment. -->
|
21 |
+
|
22 |
+
# organamnist-swin-base-finetuned
|
23 |
+
|
24 |
+
This model is a fine-tuned version of [microsoft/swin-large-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-large-patch4-window7-224-in22k) on the medmnist-v2 dataset.
|
25 |
+
It achieves the following results on the evaluation set:
|
26 |
+
- Loss: 0.0433
|
27 |
+
- Accuracy: 0.9846
|
28 |
+
- Precision: 0.9888
|
29 |
+
- Recall: 0.9864
|
30 |
+
- F1: 0.9874
|
31 |
+
|
32 |
+
## Model description
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Intended uses & limitations
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training and evaluation data
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training procedure
|
45 |
+
|
46 |
+
### Training hyperparameters
|
47 |
+
|
48 |
+
The following hyperparameters were used during training:
|
49 |
+
- learning_rate: 0.005
|
50 |
+
- train_batch_size: 16
|
51 |
+
- eval_batch_size: 16
|
52 |
+
- seed: 42
|
53 |
+
- gradient_accumulation_steps: 4
|
54 |
+
- total_train_batch_size: 64
|
55 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
56 |
+
- lr_scheduler_type: linear
|
57 |
+
- num_epochs: 10
|
58 |
+
- mixed_precision_training: Native AMP
|
59 |
+
|
60 |
+
### Training results
|
61 |
+
|
62 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
63 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
64 |
+
| 0.6172 | 1.0 | 540 | 0.1913 | 0.9373 | 0.9481 | 0.9427 | 0.9422 |
|
65 |
+
| 0.6346 | 2.0 | 1081 | 0.0756 | 0.9760 | 0.9799 | 0.9752 | 0.9770 |
|
66 |
+
| 0.6405 | 3.0 | 1621 | 0.1310 | 0.9553 | 0.9600 | 0.9515 | 0.9537 |
|
67 |
+
| 0.5005 | 4.0 | 2162 | 0.1138 | 0.9663 | 0.9757 | 0.9718 | 0.9729 |
|
68 |
+
| 0.5669 | 5.0 | 2702 | 0.1142 | 0.9603 | 0.9704 | 0.9647 | 0.9665 |
|
69 |
+
| 0.5548 | 6.0 | 3243 | 0.0569 | 0.9772 | 0.9812 | 0.9785 | 0.9795 |
|
70 |
+
| 0.4298 | 7.0 | 3783 | 0.0989 | 0.9663 | 0.9770 | 0.9723 | 0.9736 |
|
71 |
+
| 0.3932 | 8.0 | 4324 | 0.0335 | 0.9884 | 0.9903 | 0.9887 | 0.9894 |
|
72 |
+
| 0.3409 | 9.0 | 4864 | 0.0371 | 0.9878 | 0.9900 | 0.9877 | 0.9887 |
|
73 |
+
| 0.3111 | 9.99 | 5400 | 0.0433 | 0.9846 | 0.9888 | 0.9864 | 0.9874 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- PEFT 0.11.1
|
79 |
+
- Transformers 4.39.3
|
80 |
+
- Pytorch 2.1.2
|
81 |
+
- Datasets 2.18.0
|
82 |
+
- Tokenizers 0.15.2
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4702620
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bc2969fba89d0542e2a6403af01337eaff443596362b0230478f46e6bcb4181
|
3 |
size 4702620
|