File size: 2,173 Bytes
70860f8
 
 
2680a1e
bf31b06
 
 
2d4ceff
 
d04d89e
2d4ceff
 
de95105
 
 
 
 
 
 
 
2d4ceff
 
a121d01
 
 
 
 
 
 
2d4ceff
 
 
1f17719
 
 
 
 
 
 
 
 
 
 
 
 
2d4ceff
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
license: apache-2.0
---
# **m**utual **i**nformation **C**ontrastive **S**entence **E**mbedding (**miCSE**):
[![arXiv](https://img.shields.io/badge/arXiv-2109.05105-29d634.svg)](https://arxiv.org/abs/2211.04928)
Language model of the pre-print arXiv paper titled: "_**miCSE**: Mutual Information Contrastive Learning for Low-shot Sentence Embeddings_" 



The **miCSE** language model is trained for sentence similarity computation. Training the model imposes alignment between the attention pattern of different views (embeddings of augmentations) during contrastive learning. Learning sentence embeddings with **miCSE** entails enforcing the syntactic consistency across augmented views for every single sentence, making contrastive self-supervised learning more sample efficient. Sentence representations correspond to the embedding of the _**[CLS]**_ token.


# Usage


```shell
tokenizer = AutoTokenizer.from_pretrained("sap-ai-research/<----Enter Model Name---->")

model = AutoModelWithLMHead.from_pretrained("sap-ai-research/<----Enter Model Name---->")
```
# Benchmark

Model results on SentEval Benchmark:
```shell
+-------+-------+-------+-------+-------+--------------+-----------------+--------+                                               
| STS12 | STS13 | STS14 | STS15 | STS16 | STSBenchmark | SICKRelatedness | S.Avg. |                                               
+-------+-------+-------+-------+-------+--------------+-----------------+--------+                                               
| 71.71 | 83.09 | 75.46 | 83.13 | 80.22 |    79.70     |      73.62      | 78.13  |                                               
+-------+-------+-------+-------+-------+--------------+-----------------+--------+  
```


## Citations
If you use this code in your research or want to refer to our work, please cite:

```
@article{Klein2022miCSEMI,
  title={miCSE: Mutual Information Contrastive Learning for Low-shot Sentence Embeddings},
  author={Tassilo Klein and Moin Nabi},
  journal={ArXiv},
  year={2022},
  volume={abs/2211.04928}
}
```

#### Authors:
 - [Tassilo Klein](https://tjklein.github.io/)
 - [Moin Nabi](https://moinnabi.github.io/)