ppo-LunarLander-v2 / config.json
sankar82's picture
Upload my first LunarLander-v2 model trained with PPO
ce12b16
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7da92dca8af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7da92dca8b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7da92dca8c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7da92dca8ca0>", "_build": "<function ActorCriticPolicy._build at 0x7da92dca8d30>", "forward": "<function ActorCriticPolicy.forward at 0x7da92dca8dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7da92dca8e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7da92dca8ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7da92dca8f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7da92dca9000>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7da92dca9090>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7da92dca9120>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7da92dc56e00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696844174049188485, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAC2uhj69g40+IloPvguzWr7sQw49o/Z6vQAAAAAAAAAAZo5GPYXzjblWMz45AJInNKG0i7sNAGe4AACAPwAAgD8aOM09uCbgudcniLxXaUE6WtLLOzWFKTsAAAAAAACAP+N3Zb7MdmA/j7gXPoYclb5heVq9ShcUPQAAAAAAAAAAsyu5vXbIWrwWjkM8BoYEO4kFvL1nxhI8AAAAAAAAgD+zH/89PW43u6C3+zplvwa5wweEvJeyA7oAAIA/AACAPwDMRL3hrKq6sy7yOn18SjlkZF66IhWLuQAAgD8AAIA/Zmj1PJV9FD6iYHS9+YA7vqwADzyO2hm9AAAAAAAAAADNhs69Thn5PlaN2j15xV2+XByluZxlxTwAAAAAAAAAAGZWED1Yrao/zuAVPjXnr75MCCg9c9+bPAAAAAAAAAAAzYUFPfvuvT6ovka9YxVQvlDoAr36PGU7AAAAAAAAAAAzDwC8pNK0P0atSr/1+J89GYAUPCqjNz4AAAAAAAAAABpWD70pjFe6KKpTs7fiIa8rBwa7U6nQMwAAgD8AAIA/MxIavRZ9hj8fz527krKMvqeJYb3+Bi48AAAAAAAAAADNL6u9wyk8uqOqeLrD/jY4L7U+OjSNijkAAAAAAACAP02DED27gYM+8pZePEBCmb7/GT49VuAhPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAQAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGK3Y7zTWoaMAWyUTegDjAF0lEdAnA6V1B+nZXV9lChoBkdAa+vNSIgvDmgHTWUBaAhHQJwP4xxkupV1fZQoaAZHQHFaKzqrzXloB02MAWgIR0CcEeRXfZVXdX2UKGgGR0BHMJPIn0CjaAdNDgFoCEdAnBJHsw+MZXV9lChoBkdAcLcyBTXJ5mgHTTABaAhHQJwTWfcvduZ1fZQoaAZHQHGDZNKyv9toB02xAWgIR0CcE5fEn9ehdX2UKGgGR0BrJBjSXt0FaAdNaAFoCEdAnBYHdfsu4HV9lChoBkdAcWLPmxMWXWgHTb4BaAhHQJwXRVbRne11fZQoaAZHQHFtocaOxSpoB03kAWgIR0CcGV65Xlr/dX2UKGgGR0BwPWBczImxaAdNtgFoCEdAnC7HeBQN1HV9lChoBkdAbjex0MgEEGgHTTICaAhHQJwvtIOH3111fZQoaAZHQHEZD1CgK4RoB028AmgIR0CcM1WepXIVdX2UKGgGR0BvmYjbBXS0aAdNUgFoCEdAnDUKoqCpWHV9lChoBkdAb+O6nzg/DGgHTUIBaAhHQJw1fNcGC7N1fZQoaAZHQHBBkHUtqYZoB018AWgIR0CcNYO1OTJRdX2UKGgGR0Bt8kchkiD/aAdNNwJoCEdAnDYZdjXnQ3V9lChoBkdAcQs5gw482mgHTVcBaAhHQJw4Shdt2s91fZQoaAZHQG9VBGhEjPhoB01rAWgIR0CcOMmA9V3mdX2UKGgGR0BCHdPDYRNAaAdNHwFoCEdAnDlqz7di2HV9lChoBkdAcO8Wykbgj2gHTV4BaAhHQJw5n3N9ph51fZQoaAZHQHFHgLiMo+hoB01sAWgIR0CcOfe0G/vfdX2UKGgGR0BwKjxOLzf8aAdNLQFoCEdAnDsghbGFSXV9lChoBkdAbZLz2exwAGgHTUQBaAhHQJw8LBUJfIF1fZQoaAZHQG2dn0K7ZnNoB019AWgIR0CcPFlo11nvdX2UKGgGR0BhL1cbBGhFaAdN6ANoCEdAnD9dfXwsoXV9lChoBkdAcRP/nW8RMGgHTZYBaAhHQJxAQvwmVqx1fZQoaAZHQG57cYqG1x9oB00hAWgIR0CcQPfh/Aj6dX2UKGgGR0BwRcMjNY8uaAdNYgFoCEdAnEG5dGAkLXV9lChoBkdAb/d8OTaCc2gHTUoBaAhHQJxCM3AEdNp1fZQoaAZHQEHcjM3ZPEdoB00VAWgIR0CcQ6Q7cO9WdX2UKGgGR0BwMKeDnNgSaAdNSQFoCEdAnEVPh2nsLXV9lChoBkdAb4r0uDjBEmgHTT4BaAhHQJxGUY+B6KN1fZQoaAZHQHKonIp6QeVoB02XAWgIR0CcRmn0TURWdX2UKGgGR0BxGDmOlwcYaAdNSAFoCEdAnEaB5kbxVnV9lChoBkdAWetsSCe2/mgHTegDaAhHQJxHvOB19v11fZQoaAZHQHBrtRBNVR1oB01YAWgIR0CcR8nHeaa1dX2UKGgGR0BvQ54B3iaRaAdNyAFoCEdAnEfcZP2wmnV9lChoBkdAbTJF72L5ymgHTTsBaAhHQJxI3d8Aq/d1fZQoaAZHQHCVXSfDk2hoB01hAWgIR0CcSRUY8+zMdX2UKGgGR0Bw4/nHNorXaAdNZQFoCEdAnEnzbWVeKXV9lChoBkdAcIcmFrVOK2gHTSkBaAhHQJxLi2mYSg51fZQoaAZHQG4MSMcZLqVoB01ZAWgIR0CcTIb7j1f3dX2UKGgGR0BsdDkfcN6PaAdNPAFoCEdAnE2SjHn2ZnV9lChoBkdAbcuurZJ04mgHTTQBaAhHQJxNt6MR6GB1fZQoaAZHQGw4D28IzFdoB01dAWgIR0CcTg2vjfeldX2UKGgGR0BxxvWnTAnEaAdNQAFoCEdAnFKizw+dLHV9lChoBkdAbtZrTpgTiGgHTXABaAhHQJxUIQrc0tR1fZQoaAZHQHEGQKjSG8FoB004AWgIR0CcVC0gbIcSdX2UKGgGR0ByZ1W1c+qzaAdNXwFoCEdAnFR5j+aScXV9lChoBkdAcN+BMSK3u2gHTXwBaAhHQJxWRG7SRbN1fZQoaAZHQHFrOo1k1/FoB01aAWgIR0CcVllImPYGdX2UKGgGR0BvaGETQE6laAdNVwFoCEdAnFfVOCXhO3V9lChoBkdAb3YySmqHXWgHTf8BaAhHQJxuaWVu76J1fZQoaAZHQHEFE+5e7cxoB02uAWgIR0Ccbwgs9SuRdX2UKGgGR0Bv5dyHVPN3aAdNIwFoCEdAnG8etfXws3V9lChoBkdAcZ0q0MPSUmgHTXUBaAhHQJxvenpB5X51fZQoaAZHQHFoqyfL9uRoB00gAWgIR0Ccb/2K2rn1dX2UKGgGR0Bubfv8ZUDMaAdNpgFoCEdAnHAZVbRne3V9lChoBkdAcQkiItUXHmgHTWkBaAhHQJxwiJoCdSV1fZQoaAZHQGyowE6kqMFoB01pAWgIR0CcclcbR4QjdX2UKGgGR0BtZoYFaB7NaAdNZQFoCEdAnHKKAOJ+D3V9lChoBkdAcW10GeMAFWgHTU4BaAhHQJx1qqebutx1fZQoaAZHQG7cO8kD6nBoB005AWgIR0CcdenrIHTrdX2UKGgGR0BwiaXVsk6caAdNTgFoCEdAnHaBS1mapnV9lChoBkdAb3Yw5eZ5RmgHTTIBaAhHQJx20wWWQfZ1fZQoaAZHQHBAJimVJMBoB01HAWgIR0Ccd6fq5byIdX2UKGgGR0BxfXMTviLmaAdNOgFoCEdAnHgkCeVcEHV9lChoBkdAceuyGzru6WgHTZoBaAhHQJx5QdbPhQ51fZQoaAZHQHNa/9pAUtZoB00nAWgIR0CcexKa5PM0dX2UKGgGR0Bwl975VOsUaAdNUwFoCEdAnHsdz0Yj0XV9lChoBkdAcY6kpI+W4WgHTV8BaAhHQJx7fihnJ1d1fZQoaAZHQG5TlTvRZ2ZoB01VAWgIR0Cce5AvtdAxdX2UKGgGR0BuPMwJw84haAdNeAFoCEdAnHvGOdXkpHV9lChoBkdAcm+cpb2US2gHTU0BaAhHQJx7ygbp/w11fZQoaAZHQHGTudCmdiFoB01TAWgIR0CcfAflZHNHdX2UKGgGR0BvC1T72tdSaAdNcAFoCEdAnH+QTEit73V9lChoBkdAcCZeeWfK6mgHTQwBaAhHQJx/t/kNnXd1fZQoaAZHQHCRKVdHDrJoB015AWgIR0Ccf7ALy+YddX2UKGgGR0Brud7tzCDVaAdNQgFoCEdAnIDarJbMYHV9lChoBkdAbz1fKp1ifGgHTUABaAhHQJyA/aDf3vh1fZQoaAZHQHC73JxNqQBoB00yAWgIR0CcgVcWTHKfdX2UKGgGR0ByA0V58jRlaAdNJwFoCEdAnIGiMUAT7HV9lChoBkdAb/Q7r9l2/2gHTTwBaAhHQJyCx+kP+XJ1fZQoaAZHQHDnANkOI69oB00ZAWgIR0CchVyjHn2adX2UKGgGR0Bv5A8dPtUoaAdNMAFoCEdAnIV02cawU3V9lChoBkdAcToJY1YQrmgHTXABaAhHQJyGCLzf7791fZQoaAZHQGzmmuTzNEBoB00vAWgIR0CchouFpPAPdX2UKGgGR0BuA9bJOnEVaAdNQwFoCEdAnIaX4fwI+nV9lChoBkdAcj8SWqtHQWgHTVMBaAhHQJyHbDXOGCZ1fZQoaAZHQHBZq7ROUMZoB01qAWgIR0Cch5XfZVXFdX2UKGgGR0BwTdQTEit8aAdNjAFoCEdAnIksHbAUL3V9lChoBkdAa2eW/rSmZWgHTT0BaAhHQJyLBaGHpKV1fZQoaAZHQG30urhisn1oB01QAWgIR0Cci7radtl7dX2UKGgGR0BxQXYHxBmgaAdNagFoCEdAnIyUCJXQt3V9lChoBkdAcJgNt65Xl2gHTUQBaAhHQJyMq6DoQnR1fZQoaAZHQG6VdZJTVDtoB009AWgIR0CcjMuJk5IZdX2UKGgGR0Bt6V8/lhgFaAdNLQFoCEdAnI2x7JGOMnV9lChoBkdAbzj3Ux20RmgHTXEBaAhHQJyOwHjZL7J1fZQoaAZHQHDVGUfPompoB03QAWgIR0CckivmYBvKdX2UKGgGR0BwxFPepGWlaAdNWQFoCEdAnJO6zE74jHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 256, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}