File size: 14,353 Bytes
50feb15 f94d6d5 961d3b5 b27ec7f 7566c28 bf2749e 7ae264c eb3ffc5 50feb15 f94d6d5 7ae264c 50feb15 f94d6d5 50feb15 f94d6d5 50feb15 f94d6d5 b27ec7f f94d6d5 50feb15 b27ec7f 50feb15 b27ec7f 1458565 f94d6d5 b27ec7f f94d6d5 50feb15 b27ec7f 7ae264c f94d6d5 50feb15 f94d6d5 50feb15 b27ec7f 50feb15 f94d6d5 50feb15 f94d6d5 50feb15 f94d6d5 50feb15 f94d6d5 b27ec7f f94d6d5 b27ec7f f94d6d5 a10df5a f94d6d5 b27ec7f f94d6d5 b27ec7f f94d6d5 b27ec7f f94d6d5 b27ec7f f94d6d5 b27ec7f f94d6d5 b27ec7f f94d6d5 b27ec7f f94d6d5 f9ca50e f94d6d5 f9ca50e f94d6d5 b27ec7f f94d6d5 b27ec7f f94d6d5 50feb15 f94d6d5 b27ec7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
---
license: mit
language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- no
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh
- yue
base_model:
- FacebookAI/xlm-roberta-base
pipeline_tag: feature-extraction
tags:
- music
---
# **CLaMP 3: Universal Music Information Retrieval Across Unaligned Modalities and Unseen Languages**
[](https://sanderwood.github.io/clamp3/)
[](https://arxiv.org/abs/2502.10362)
[](https://github.com/sanderwood/clamp3)
[](https://huggingface.co/spaces/sander-wood/clamp3)
[](https://huggingface.co/sander-wood/clamp3/tree/main)
[](https://huggingface.co/datasets/sander-wood/m4-rag)
[](https://huggingface.co/datasets/sander-wood/wikimt-x)
<p align="center">
<img src="overview.png" alt="CLaMP 3 Overview" width="50%">
</p>
## **Overview**
CLaMP 3 is a multimodal and multilingual framework for music information retrieval (MIR) that supports all major music formats—sheet music, audio, and performance signals—along with multilingual text. It is trained on 27 languages and can generalize to support 100 languages. Using contrastive learning, CLaMP 3 aligns these different formats into a shared representation space, making cross-modal retrieval seamless. Experiments show that it significantly outperforms previous strong baselines, setting a new state-of-the-art in multimodal and multilingual MIR.
### **Key Features**
- **Multimodal Support:**
- **Sheet Music:** Uses **Interleaved ABC notation**, with a context size of **512 bars**.
- **Performance Signals:** Processes **MIDI Text Format (MTF)** data, with a context size of **512 MIDI messages**.
- **Audio Recordings:** Works with features extracted by **[MERT](https://arxiv.org/abs/2306.00107)**, with a context size of **640 seconds of audio**.
- **Multilingual Capabilities:**
- Trained on **27 languages** and generalizes to all **100 languages** supported by **[XLM-R](https://arxiv.org/abs/1911.02116)**.
- **Datasets & Benchmarking:**
- **[M4-RAG](https://huggingface.co/datasets/sander-wood/m4-rag):** A web-scale dataset of **2.31M high-quality music-text pairs** across 27 languages and 194 countries.
- **[WikiMT-X](https://huggingface.co/datasets/sander-wood/wikimt-x):** A MIR benchmark containing **1,000 triplets** of sheet music, audio, and diverse text annotations.
### **What Can CLaMP 3 Do?**
CLaMP 3 unifies diverse music data and text into a shared representation space, enabling the following key capabilities:
- **Text-to-Music Retrieval**: Finds relevant music based on text descriptions in 100 languages.
- **Image-to-Music Retrieval**: Matches music that aligns with the scene depicted in the image.
- **Cross-Modal Music Retrieval**: Enables music retrieval and recommendation across different modalities.
- **Zero-Shot Music Classification**: Identifies musical attributes such as genres, moods, and styles without labeled training data.
- **Music Semantic Similarity Evaluation**: Measures semantic similarity between:
- **Generated music and its text prompt**, validating how well text-to-music models follow instructions.
- **Generated music and reference music**, assessing their semantic similarity, including aspects like style, instrumentation, and musicality.
For examples demonstrating these capabilities, visit [CLaMP 3 Homepage](https://sanderwood.github.io/clamp3/).
## **Repository Structure**
- **[code/](https://github.com/sanderwood/clamp3/tree/main/code)** → Training & feature extraction scripts.
- **[classification/](https://github.com/sanderwood/clamp3/tree/main/classification)** → Linear classification training and prediction.
- **[preprocessing/](https://github.com/sanderwood/clamp3/tree/main/preprocessing)** → Convert data into Interleaved ABC, MTF, or MERT-extracted features.
- **[retrieval/](https://github.com/sanderwood/clamp3/tree/main/retrieval)** → Semantic search, retrieval evaluation, and similarity calculations.
> **Note:** Ensure the model weights are placed in the `code/` folder, and verify the configuration hyperparameters before use.
## **Getting Started**
### **Environment Setup**
To set up the environment for CLaMP 3, run:
```bash
conda env create -f environment.yml
conda activate clamp3
```
### **Data Preparation**
#### **1. Convert Music Data to Compatible Formats**
Before using CLaMP 3, preprocess **MusicXML files** into **Interleaved ABC**, **MIDI files** into **MTF**, and **audio files** into **MERT-extracted features**.
> **Note:** Each script requires a manual edit of the `input_dir` variable at the top of the file before running, except for the MERT extraction script (`extract_mert.py`), which takes command-line arguments for input and output paths.
##### **1.1 Convert MusicXML to Interleaved ABC Notation**
CLaMP 3 requires **Interleaved ABC notation** for sheet music. To achieve this, first, convert **MusicXML** (`.mxl`, `.xml`, `.musicxml`) to **standard ABC** using [`batch_xml2abc.py`](https://github.com/sanderwood/clamp3/blob/main/preprocessing/abc/batch_xml2abc.py):
```bash
python batch_xml2abc.py
```
- **Input:** `.mxl`, `.xml`, `.musicxml`
- **Output:** `.abc` (Standard ABC)
Next, process the standard ABC files into **Interleaved ABC notation** using [`batch_interleaved_abc.py`](https://github.com/sanderwood/clamp3/blob/main/preprocessing/abc/batch_interleaved_abc.py):
```bash
python batch_interleaved_abc.py
```
- **Input:** `.abc` (Standard ABC)
- **Output:** `.abc` *(Interleaved ABC for CLaMP 3)*
##### **1.2 Convert MIDI to MTF Format**
CLaMP 3 processes performance signals in **MIDI Text Format (MTF)**. Convert **MIDI files** (`.mid`, `.midi`) into **MTF format** using [`batch_midi2mtf.py`](https://github.com/sanderwood/clamp3/blob/main/preprocessing/midi/batch_midi2mtf.py):
```bash
python batch_midi2mtf.py
```
- **Input:** `.mid`, `.midi`
- **Output:** `.mtf` *(MTF for CLaMP 3)*
##### **1.3 Extract Audio Features using MERT**
For audio processing, CLaMP 3 uses **MERT-extracted features** instead of raw waveforms. Extract MERT-based features from raw audio (`.mp3`, `.wav`) using [`extract_mert.py`](https://github.com/sanderwood/clamp3/blob/main/preprocessing/audio/extract_mert.py):
```bash
python extract_mert.py --input_path <input_path> --output_path <output_path> --model_path m-a-p/MERT-v1-95M --mean_features
```
- **Input:** `.mp3`, `.wav`
- **Output:** `.npy` *(Processed audio features for CLaMP 3)*
### **Training and Feature Extraction**
#### **1. Training Models**
CLaMP 3 is the most powerful music retrieval model, and in most cases, retraining is not needed. However, if necessary, follow these steps.
1. Modify **[config.py](https://github.com/sanderwood/clamp3/blob/main/code/config.py)** to adjust **hyperparameters** and **data paths**.
2. Train on your own data.
To train CLaMP 3 on **symbolic music** (e.g., sheet music, MIDI), run:
```bash
python -m torch.distributed.launch --nproc_per_node=<GPUs> --use_env train_clamp3_symbolic.py
```
For **audio data**, use:
```bash
python -m torch.distributed.launch --nproc_per_node=<GPUs> --use_env train_clamp3_audio.py
```
##### **Using Pre-Trained Models (Recommended)**
For most use cases, it's best to use pre-trained weights instead of training from scratch.
| Version | Best for | Download Link |
|---------|---------|--------------|
| **CLaMP 3 SAAS** | **Audio-based retrieval (Recommended)** | [Download SAAS](https://huggingface.co/sander-wood/clamp3/blob/main/weights_clamp3_saas_h_size_768_t_model_FacebookAI_xlm-roberta-base_t_length_128_a_size_768_a_layers_12_a_length_128_s_size_768_s_layers_12_p_size_64_p_length_512.pth) |
| **CLaMP 3 C2** | **Symbolic music retrieval (Sheet music, MIDI)** | [Download C2](https://huggingface.co/sander-wood/clamp3/blob/main/weights_clamp3_c2_h_size_768_t_model_FacebookAI_xlm-roberta-base_t_length_128_a_size_768_a_layers_12_a_length_128_s_size_768_s_layers_12_p_size_64_p_length_512.pth) |
##### **How to Switch Between Versions?**
By default, CLaMP 3 is configured for the **SAAS version** (optimized for audio).
- If working with **symbolic music (MIDI, sheet music)**, use the **C2 version**:
**Modify line 66 in `config.py`** from `"saas"` to `"c2"`.
#### **2. Feature Extraction**
After training (or using pre-trained weights), extract features using [`extract_clamp3.py`](https://github.com/sanderwood/clamp3/blob/main/code/extract_clamp3.py):
```bash
accelerate launch extract_clamp3.py --epoch <epoch> <input_dir> <output_dir> [--get_global]
```
- **`--epoch <epoch>`:** (Optional) Specify the checkpoint epoch.
- **`<input_dir>`:** Directory containing the input files.
- **`<output_dir>`:** Destination folder for the output `.npy` features.
- **`--get_global`**: **(Required for retrieval!)** Extracts a **global semantic vector** for each input.
All extracted features are stored as `.npy` files.
> **Note**: For retrieval, `--get_global` must be used. Without it, CLaMP 3 will not work correctly for retrieval tasks. You only omit `--get_global` if you are performing downstream fine-tuning or need raw feature extraction for custom tasks.
### **Retrieval and Classification**
#### **1. Semantic Search**
To perform semantic search with CLaMP 3, you first need to extract the features for both your **query** and **reference** data using [`extract_clamp3.py`](https://github.com/sanderwood/clamp3/blob/main/code/extract_clamp3.py). The query is usually a text description, and the reference folder contains a large set of music data, such as audio or sheet music.
After extracting the features, you can perform the semantic search using the [`semantic_search.py`](https://github.com/sanderwood/clamp3/blob/main/retrieval/semantic_search.py) script. This search can be used for various tasks.
```bash
python semantic_search.py <query_file> <reference_folder> [--top_k TOP_K]
```
- **`<query_file>`**: Path to the query feature (e.g., `ballad.npy`).
- **`<reference_folder>`**: Folder containing reference features for comparison.
- **`--top_k`**: *(Optional)* Number of top similar items to display (default is 10).
CLaMP 3's semantic search enables various retrieval and evaluation tasks by comparing features extracted from queries and reference data. Generally, the larger and more diverse the reference music dataset, the higher the likelihood of retrieving relevant and accurately matched music.
##### **1. Text-to-Music Retrieval**
- **Query:** Text description of the desired music.
- **Reference:** Music data (e.g., audio files).
- **Output:** Retrieves music that best matches the semantic meaning of the text description.
##### **2. Image-to-Music Retrieval**
- **Query:** Generate an image caption using models like [BLIP](https://huggingface.co/Salesforce/blip-image-captioning-base).
- **Reference:** Music data (e.g., audio files).
- **Output:** Finds music that semantically aligns with the image.
##### **3. Cross-Modal and Same-Modal Music Retrieval**
- **Cross-Modal Retrieval:**
- **Query:** Music data from one modality (e.g., audio).
- **Reference:** Music data from another modality (e.g., MIDI, ABC notation).
- **Output:** Finds semantically similar music across different representations.
- **Same-Modal Retrieval (Semantic-Based Music Recommendation):**
- **Query & Reference:** Both are from the same modality (e.g., audio-to-audio).
- **Output:** Recommends similar music based on semantic meaning.
##### **4. Zero-Shot Music Classification**
- **Query:** Music data.
- **Reference:** Class descriptions (e.g., "It is classical," "It is folk").
- **Output:** Assigns the most relevant class based on feature similarity.
##### **5. Music Semantic Similarity Evaluation**
- **Query:** High-quality music or music generation prompt.
- **Reference:** Generated music.
- **Output:** Ranks generated music based on semantic similarity to the query. For large-scale evaluation between generated music and reference music, it is recommended to use [`clamp3_score.py`](https://github.com/sanderwood/clamp3/blob/main/retrieval/clamp3_score.py).
#### **2. Classification**
Train a linear classifier using **[`train_cls.py`](https://github.com/sanderwood/clamp3/tree/main/classification/train_cls.py)**:
```bash
python train_cls.py --train_folder <path> --eval_folder <path> [--num_epochs <int>] [--learning_rate <float>] [--balanced_training]
```
Run inference with **[`inference_cls.py`](https://github.com/sanderwood/clamp3/tree/main/classification/inference_cls.py)**:
```bash
python inference_cls.py <weights_path> <feature_folder> <output_file>
```
## **Citation**
If you find CLaMP 3 useful in your work, please consider citing our paper:
```bibtex
@misc{wu2025clamp3universalmusic,
title={CLaMP 3: Universal Music Information Retrieval Across Unaligned Modalities and Unseen Languages},
author={Shangda Wu and Zhancheng Guo and Ruibin Yuan and Junyan Jiang and Seungheon Doh and Gus Xia and Juhan Nam and Xiaobing Li and Feng Yu and Maosong Sun},
year={2025},
eprint={2502.10362},
archivePrefix={arXiv},
primaryClass={cs.SD},
url={https://arxiv.org/abs/2502.10362}
}
``` |