--- base_model: google-t5/t5-small datasets: - Andyrasika/TweetSumm-tuned library_name: peft license: apache-2.0 metrics: - rouge - f1 - precision - recall tags: - generated_from_trainer model-index: - name: ia3-finetune-t5-small-tweetsumm-1724776109 results: - task: type: summarization name: Summarization dataset: name: Andyrasika/TweetSumm-tuned type: Andyrasika/TweetSumm-tuned metrics: - type: rouge value: 0.3032 name: Rouge1 - type: f1 value: 0.8624 name: F1 - type: precision value: 0.8604 name: Precision - type: recall value: 0.8646 name: Recall --- # ia3-finetune-t5-small-tweetsumm-1724776109 This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on the Andyrasika/TweetSumm-tuned dataset. It achieves the following results on the evaluation set: - Loss: 2.4772 - Rouge1: 0.3032 - Rouge2: 0.1016 - Rougel: 0.2431 - Rougelsum: 0.2761 - Gen Len: 49.7364 - F1: 0.8624 - Precision: 0.8604 - Recall: 0.8646 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:------:|:---------:|:------:| | 3.074 | 1.0 | 110 | 2.7180 | 0.2578 | 0.07 | 0.2025 | 0.2348 | 49.7455 | 0.8554 | 0.8499 | 0.8613 | | 2.8218 | 2.0 | 220 | 2.5242 | 0.2895 | 0.0902 | 0.2315 | 0.2639 | 49.7 | 0.8603 | 0.8578 | 0.863 | | 2.5886 | 3.0 | 330 | 2.4772 | 0.3032 | 0.1016 | 0.2431 | 0.2761 | 49.7364 | 0.8624 | 0.8604 | 0.8646 | ### Framework versions - PEFT 0.12.1.dev0 - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1