File size: 2,538 Bytes
501dd7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
base_model: google-t5/t5-small
datasets:
- Andyrasika/TweetSumm-tuned
library_name: peft
license: apache-2.0
metrics:
- rouge
- f1
- precision
- recall
tags:
- generated_from_trainer
model-index:
- name: ia3-finetune-t5-small-tweetsumm-1724776109
results:
- task:
type: summarization
name: Summarization
dataset:
name: Andyrasika/TweetSumm-tuned
type: Andyrasika/TweetSumm-tuned
metrics:
- type: rouge
value: 0.3032
name: Rouge1
- type: f1
value: 0.8624
name: F1
- type: precision
value: 0.8604
name: Precision
- type: recall
value: 0.8646
name: Recall
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ia3-finetune-t5-small-tweetsumm-1724776109
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on the Andyrasika/TweetSumm-tuned dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4772
- Rouge1: 0.3032
- Rouge2: 0.1016
- Rougel: 0.2431
- Rougelsum: 0.2761
- Gen Len: 49.7364
- F1: 0.8624
- Precision: 0.8604
- Recall: 0.8646
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:------:|:---------:|:------:|
| 3.074 | 1.0 | 110 | 2.7180 | 0.2578 | 0.07 | 0.2025 | 0.2348 | 49.7455 | 0.8554 | 0.8499 | 0.8613 |
| 2.8218 | 2.0 | 220 | 2.5242 | 0.2895 | 0.0902 | 0.2315 | 0.2639 | 49.7 | 0.8603 | 0.8578 | 0.863 |
| 2.5886 | 3.0 | 330 | 2.4772 | 0.3032 | 0.1016 | 0.2431 | 0.2761 | 49.7364 | 0.8624 | 0.8604 | 0.8646 |
### Framework versions
- PEFT 0.12.1.dev0
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1 |