leaderboard-pr-bot commited on
Commit
dd03f9b
·
verified ·
1 Parent(s): 56cdeb0

Adding Evaluation Results

Browse files

This is an automated PR created with https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr

The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card.

If you encounter any issues, please report them to https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr/discussions

Files changed (1) hide show
  1. README.md +112 -4
README.md CHANGED
@@ -1,14 +1,122 @@
1
  ---
2
- license: mit
3
- datasets:
4
- - HuggingFaceH4/ultrafeedback_binarized
5
  language:
6
  - en
 
7
  base_model:
8
  - princeton-nlp/Llama-3-Base-8B-SFT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
  This is an aligned model based on princeton-nlp/Llama-3-Base-8B-SFT. The alignment loss has two parts, preference loss and a regularization term.
12
  The alignment loss does not require the assumption of an existing underlying reward model. Moreover, the distribution's ``softness" is adjustable via the softmax exponent, an algorithm parameter.
13
 
14
- More information will be added later.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
 
 
2
  language:
3
  - en
4
+ license: mit
5
  base_model:
6
  - princeton-nlp/Llama-3-Base-8B-SFT
7
+ datasets:
8
+ - HuggingFaceH4/ultrafeedback_binarized
9
+ model-index:
10
+ - name: Llama3
11
+ results:
12
+ - task:
13
+ type: text-generation
14
+ name: Text Generation
15
+ dataset:
16
+ name: IFEval (0-Shot)
17
+ type: HuggingFaceH4/ifeval
18
+ args:
19
+ num_few_shot: 0
20
+ metrics:
21
+ - type: inst_level_strict_acc and prompt_level_strict_acc
22
+ value: 33.21
23
+ name: strict accuracy
24
+ source:
25
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sabersaleh/Llama3
26
+ name: Open LLM Leaderboard
27
+ - task:
28
+ type: text-generation
29
+ name: Text Generation
30
+ dataset:
31
+ name: BBH (3-Shot)
32
+ type: BBH
33
+ args:
34
+ num_few_shot: 3
35
+ metrics:
36
+ - type: acc_norm
37
+ value: 26.71
38
+ name: normalized accuracy
39
+ source:
40
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sabersaleh/Llama3
41
+ name: Open LLM Leaderboard
42
+ - task:
43
+ type: text-generation
44
+ name: Text Generation
45
+ dataset:
46
+ name: MATH Lvl 5 (4-Shot)
47
+ type: hendrycks/competition_math
48
+ args:
49
+ num_few_shot: 4
50
+ metrics:
51
+ - type: exact_match
52
+ value: 5.51
53
+ name: exact match
54
+ source:
55
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sabersaleh/Llama3
56
+ name: Open LLM Leaderboard
57
+ - task:
58
+ type: text-generation
59
+ name: Text Generation
60
+ dataset:
61
+ name: GPQA (0-shot)
62
+ type: Idavidrein/gpqa
63
+ args:
64
+ num_few_shot: 0
65
+ metrics:
66
+ - type: acc_norm
67
+ value: 8.05
68
+ name: acc_norm
69
+ source:
70
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sabersaleh/Llama3
71
+ name: Open LLM Leaderboard
72
+ - task:
73
+ type: text-generation
74
+ name: Text Generation
75
+ dataset:
76
+ name: MuSR (0-shot)
77
+ type: TAUR-Lab/MuSR
78
+ args:
79
+ num_few_shot: 0
80
+ metrics:
81
+ - type: acc_norm
82
+ value: 7.1
83
+ name: acc_norm
84
+ source:
85
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sabersaleh/Llama3
86
+ name: Open LLM Leaderboard
87
+ - task:
88
+ type: text-generation
89
+ name: Text Generation
90
+ dataset:
91
+ name: MMLU-PRO (5-shot)
92
+ type: TIGER-Lab/MMLU-Pro
93
+ config: main
94
+ split: test
95
+ args:
96
+ num_few_shot: 5
97
+ metrics:
98
+ - type: acc
99
+ value: 24.02
100
+ name: accuracy
101
+ source:
102
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sabersaleh/Llama3
103
+ name: Open LLM Leaderboard
104
  ---
105
 
106
  This is an aligned model based on princeton-nlp/Llama-3-Base-8B-SFT. The alignment loss has two parts, preference loss and a regularization term.
107
  The alignment loss does not require the assumption of an existing underlying reward model. Moreover, the distribution's ``softness" is adjustable via the softmax exponent, an algorithm parameter.
108
 
109
+ More information will be added later.
110
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
111
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sabersaleh__Llama3)
112
+
113
+ | Metric |Value|
114
+ |-------------------|----:|
115
+ |Avg. |17.43|
116
+ |IFEval (0-Shot) |33.21|
117
+ |BBH (3-Shot) |26.71|
118
+ |MATH Lvl 5 (4-Shot)| 5.51|
119
+ |GPQA (0-shot) | 8.05|
120
+ |MuSR (0-shot) | 7.10|
121
+ |MMLU-PRO (5-shot) |24.02|
122
+