--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - renovation metrics: - accuracy model-index: - name: vit-base-renovation results: - task: name: Image Classification type: image-classification dataset: name: renovation type: renovation config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.6712328767123288 --- # vit-base-renovation This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the renovation dataset. It achieves the following results on the evaluation set: - Loss: 1.1227 - Accuracy: 0.6712 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3065 | 0.2 | 25 | 1.2953 | 0.4201 | | 1.1693 | 0.4 | 50 | 1.2178 | 0.4749 | | 1.1812 | 0.6 | 75 | 1.1296 | 0.4932 | | 1.0392 | 0.81 | 100 | 1.0653 | 0.5936 | | 0.9393 | 1.01 | 125 | 1.0614 | 0.5936 | | 0.7521 | 1.21 | 150 | 1.1803 | 0.5342 | | 0.6482 | 1.41 | 175 | 0.9854 | 0.6210 | | 0.6643 | 1.61 | 200 | 1.0757 | 0.5616 | | 0.7273 | 1.81 | 225 | 1.0664 | 0.5662 | | 0.6387 | 2.02 | 250 | 0.9146 | 0.6575 | | 0.3924 | 2.22 | 275 | 0.9536 | 0.6530 | | 0.3131 | 2.42 | 300 | 1.0534 | 0.6347 | | 0.299 | 2.62 | 325 | 1.0690 | 0.6256 | | 0.296 | 2.82 | 350 | 1.1816 | 0.6027 | | 0.1765 | 3.02 | 375 | 0.9577 | 0.6667 | | 0.1152 | 3.23 | 400 | 1.0853 | 0.6712 | | 0.112 | 3.43 | 425 | 1.0749 | 0.6849 | | 0.1083 | 3.63 | 450 | 1.1111 | 0.6804 | | 0.0969 | 3.83 | 475 | 1.1227 | 0.6712 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2