File size: 4,655 Bytes
da66274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
import torch
import numpy as np
from typing import Optional, List, Dict, Set, Any, Union
import torch.distributed as dist
import re
from utils.game24.decoding import extract_expressions, get_answer_label



class GeneratorAnswerAcc:
    def __init__(self, n_data: int):
        self.n_data = n_data

        self.world_size = dist.get_world_size() if dist.is_initialized() else 1

        self.corrs = []
        self.gather = False

    @torch.inference_mode(mode=True)
    def __call__(self, completions: List[str], questions: List[str]):
        expressions = extract_expressions(completions)

        corrs = [float(get_answer_label(expression, question)) == True for expression, question in zip(expressions, questions)]

        self.corrs.append(corrs)

    def get_metric(self, reset=True):
        if not self.gather:
            if self.world_size != 1:
                gathered_corrs = [None] * self.world_size
                for obj, container in [
                    (self.corrs, gathered_corrs), 
                ]:
                    dist.all_gather_object(container, obj)
                    
                flatten_corrs = []
                for corrs_gpus in zip(*gathered_corrs):
                    for corrs in corrs_gpus:
                        flatten_corrs.extend(corrs)

            else:
                flatten_corrs = [item for sublist in self.corrs for item in sublist]

            self.corrs = flatten_corrs[:self.n_data]
            self.gather = True

        acc = (sum(self.corrs) / len(self.corrs))

        if reset:
            self.corrs = []
            self.gather = False
        return acc
    

class MultiSamplingAnswerAcc:
    def __init__(self, n_data: int = None):
        self.n_data = n_data

        self.world_size = dist.get_world_size() if dist.is_initialized() else 1

        self.answers = []
        self.questions = []
    
    def start_new_sol_epoch(self):
        self.cur_answers = []
        self.cur_questions = []

    def end_the_sol_epoch(self):
        
        if self.world_size != 1:            
            gathered_answers, gathered_questions = tuple([None] * self.world_size for _ in range(2))
            for obj, container in [
                (self.cur_answers, gathered_answers), 
                (self.cur_questions, gathered_questions), 
            ]:
                dist.all_gather_object(container, obj)

            flatten_answers, flatten_questions = [], []
            for answers_gpus, questions_gpus in zip(zip(*gathered_answers), zip(*gathered_questions)):
                for answers, questions in zip(answers_gpus, questions_gpus):
                    flatten_answers.extend(answers)
                    flatten_questions.extend(questions)

        else:
            flatten_answers, flatten_questions = tuple([item for sublist in container for item in sublist]
                                                    for container in [self.cur_answers, self.cur_questions])

        self.answers.append(flatten_answers[:self.n_data])
        self.questions.append(flatten_questions[:self.n_data])

    @torch.inference_mode(mode=True)
    def __call__(self, completions: List[str], questions: List[str]):
        expressions = extract_expressions(completions)

        self.cur_answers.append(expressions)
        self.cur_questions.append(questions)

    def get_metric(self, n_solution: int=3, reset=True):        
        # [n_question, n_solution]
        answers = self.answers[:n_solution]
        # [n_question]
        questions = self.questions[:n_solution][0]

        pass_k = np.mean([is_passk(expressions, question) for expressions, question in zip(answers, questions)])
        acc_majority = np.mean([is_majority(expressions, question) for expressions, question in zip(answers, questions)])


        if reset:
            self.answers = []
            self.questions = []
        return pass_k, acc_majority


def is_passk(expressions, question):
   return any(get_answer_label(expression, question) for expression in expressions)


def is_majority(expressions, question):
    repres = [get_semantics(expr) for expr in expressions]
    final_repre = max(repres, key=repres.count)
    index = repres.index(final_repre)
    return get_answer_label(expressions[index], question)


def get_semantics(expression):
    numbers = re.findall(r'\d+', expression)
    symbols = re.findall(r'[+\-\*\/]', expression)

    try:
        value = eval(expression)
    except:
        value = None

    value = str(value)
    if value[-2:] == '.0':
        value = value[:-2]
    return tuple(sorted(numbers) + sorted(symbols) + [f'value={value}'])