reach-vb HF staff commited on
Commit
9a48300
·
verified ·
1 Parent(s): b1d0984

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "UltravoxModel"
4
+ ],
5
+ "audio_latency_block_size": null,
6
+ "audio_model_id": "openai/whisper-large-v3-turbo",
7
+ "audio_model_lora_config": {
8
+ "lora_alpha": 8,
9
+ "r": 0,
10
+ "target_modules": [
11
+ "k_proj",
12
+ "q_proj",
13
+ "linear_k",
14
+ "linear_q"
15
+ ]
16
+ },
17
+ "auto_map": {
18
+ "AutoConfig": "ultravox_config.UltravoxConfig",
19
+ "AutoModel": "ultravox_model.UltravoxModel"
20
+ },
21
+ "hidden_size": 4096,
22
+ "ignore_index": -100,
23
+ "initializer_range": 0.02,
24
+ "model_type": "ultravox",
25
+ "norm_init": 0.4,
26
+ "pad_token_id": 2,
27
+ "projector_act": "swiglu",
28
+ "stack_factor": 8,
29
+ "text_model_id": "HuggingFaceTB/SmolLM2-1.7B-Instruct",
30
+ "text_model_lora_config": {
31
+ "lora_alpha": 8,
32
+ "r": 0,
33
+ "target_modules": [
34
+ "k_proj",
35
+ "q_proj",
36
+ "linear_k",
37
+ "linear_q"
38
+ ]
39
+ },
40
+ "torch_dtype": "bfloat16",
41
+ "transformers_version": "4.47.0",
42
+ "vocab_size": 49152
43
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 2,
6
+ "transformers_version": "4.47.0"
7
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6023aa7254436f57e74e4b66917f6110feaabf2fe1b1291d6621fe3b384606d
3
+ size 92299736
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df0ae5d370b803fcf3f1d8363c360ea214b5f9968b79f84784b4f419fcbd2ed5
3
+ size 184602962
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a81cd594708a88392da2713211d9cbbb8000998b683813fdc44b5eab2f174dda
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c57798d3fa88e9f7f19098498af2fbd85578814b976457ff05f5a72957807e9
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "bos_token": {
7
+ "content": "<|im_start|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "eos_token": {
14
+ "content": "<|im_end|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "pad_token": "<|im_end|>",
21
+ "unk_token": {
22
+ "content": "<|endoftext|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ }
28
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<repo_name>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "4": {
37
+ "content": "<reponame>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "5": {
45
+ "content": "<file_sep>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "6": {
53
+ "content": "<filename>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "7": {
61
+ "content": "<gh_stars>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "8": {
69
+ "content": "<issue_start>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "9": {
77
+ "content": "<issue_comment>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "10": {
85
+ "content": "<issue_closed>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "11": {
93
+ "content": "<jupyter_start>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "12": {
101
+ "content": "<jupyter_text>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "13": {
109
+ "content": "<jupyter_code>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "14": {
117
+ "content": "<jupyter_output>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "15": {
125
+ "content": "<jupyter_script>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "16": {
133
+ "content": "<empty_output>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": true
139
+ }
140
+ },
141
+ "additional_special_tokens": [
142
+ "<|im_start|>",
143
+ "<|im_end|>"
144
+ ],
145
+ "bos_token": "<|im_start|>",
146
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful AI assistant named SmolLM, trained by Hugging Face<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
147
+ "clean_up_tokenization_spaces": false,
148
+ "eos_token": "<|im_end|>",
149
+ "extra_special_tokens": {},
150
+ "model_max_length": 8192,
151
+ "pad_token": "<|im_end|>",
152
+ "tokenizer_class": "GPT2Tokenizer",
153
+ "unk_token": "<|endoftext|>",
154
+ "vocab_size": 49152
155
+ }
trainer_state.json ADDED
@@ -0,0 +1,1384 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9999305603777515,
5
+ "eval_steps": 1000,
6
+ "global_step": 14400,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 6.943962224845496e-05,
13
+ "grad_norm": 9.8125,
14
+ "learning_rate": 2e-06,
15
+ "loss": 0.7188,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.006943962224845497,
20
+ "grad_norm": 0.1376953125,
21
+ "learning_rate": 0.0002,
22
+ "loss": 0.3907,
23
+ "step": 100
24
+ },
25
+ {
26
+ "epoch": 0.013887924449690994,
27
+ "grad_norm": 0.0849609375,
28
+ "learning_rate": 0.0004,
29
+ "loss": 0.2341,
30
+ "step": 200
31
+ },
32
+ {
33
+ "epoch": 0.02083188667453649,
34
+ "grad_norm": 0.146484375,
35
+ "learning_rate": 0.0006,
36
+ "loss": 0.2181,
37
+ "step": 300
38
+ },
39
+ {
40
+ "epoch": 0.027775848899381988,
41
+ "grad_norm": 0.10546875,
42
+ "learning_rate": 0.0008,
43
+ "loss": 0.197,
44
+ "step": 400
45
+ },
46
+ {
47
+ "epoch": 0.034719811124227486,
48
+ "grad_norm": 0.11376953125,
49
+ "learning_rate": 0.001,
50
+ "loss": 0.1695,
51
+ "step": 500
52
+ },
53
+ {
54
+ "epoch": 0.04166377334907298,
55
+ "grad_norm": 0.0849609375,
56
+ "learning_rate": 0.0012,
57
+ "loss": 0.14,
58
+ "step": 600
59
+ },
60
+ {
61
+ "epoch": 0.04860773557391848,
62
+ "grad_norm": 0.078125,
63
+ "learning_rate": 0.0014,
64
+ "loss": 0.1231,
65
+ "step": 700
66
+ },
67
+ {
68
+ "epoch": 0.055551697798763976,
69
+ "grad_norm": 0.0712890625,
70
+ "learning_rate": 0.0016,
71
+ "loss": 0.1141,
72
+ "step": 800
73
+ },
74
+ {
75
+ "epoch": 0.06249566002360947,
76
+ "grad_norm": 0.06298828125,
77
+ "learning_rate": 0.0018000000000000002,
78
+ "loss": 0.1077,
79
+ "step": 900
80
+ },
81
+ {
82
+ "epoch": 0.06943962224845497,
83
+ "grad_norm": 0.0615234375,
84
+ "learning_rate": 0.002,
85
+ "loss": 0.1045,
86
+ "step": 1000
87
+ },
88
+ {
89
+ "epoch": 0.06943962224845497,
90
+ "eval_covost2-en-de_loss": 1.4858413934707642,
91
+ "eval_covost2-en-de_runtime": 32.1589,
92
+ "eval_covost2-en-de_samples_per_second": 1.99,
93
+ "eval_covost2-en-de_steps_per_second": 0.062,
94
+ "step": 1000
95
+ },
96
+ {
97
+ "epoch": 0.06943962224845497,
98
+ "eval_covost2-zh-en_loss": 2.7152516841888428,
99
+ "eval_covost2-zh-en_runtime": 31.3842,
100
+ "eval_covost2-zh-en_samples_per_second": 2.039,
101
+ "eval_covost2-zh-en_steps_per_second": 0.064,
102
+ "step": 1000
103
+ },
104
+ {
105
+ "epoch": 0.06943962224845497,
106
+ "eval_peoplespeech-clean-transcription_loss": 2.0398874282836914,
107
+ "eval_peoplespeech-clean-transcription_runtime": 32.088,
108
+ "eval_peoplespeech-clean-transcription_samples_per_second": 1.995,
109
+ "eval_peoplespeech-clean-transcription_steps_per_second": 0.062,
110
+ "step": 1000
111
+ },
112
+ {
113
+ "epoch": 0.07638358447330046,
114
+ "grad_norm": 0.053955078125,
115
+ "learning_rate": 0.001999725185109816,
116
+ "loss": 0.101,
117
+ "step": 1100
118
+ },
119
+ {
120
+ "epoch": 0.08332754669814596,
121
+ "grad_norm": 0.0517578125,
122
+ "learning_rate": 0.0019989008914857113,
123
+ "loss": 0.0956,
124
+ "step": 1200
125
+ },
126
+ {
127
+ "epoch": 0.09027150892299146,
128
+ "grad_norm": 0.04443359375,
129
+ "learning_rate": 0.00199752757218401,
130
+ "loss": 0.0936,
131
+ "step": 1300
132
+ },
133
+ {
134
+ "epoch": 0.09721547114783696,
135
+ "grad_norm": 0.0390625,
136
+ "learning_rate": 0.001995605982021898,
137
+ "loss": 0.0917,
138
+ "step": 1400
139
+ },
140
+ {
141
+ "epoch": 0.10415943337268245,
142
+ "grad_norm": 0.0517578125,
143
+ "learning_rate": 0.0019931371771625545,
144
+ "loss": 0.0894,
145
+ "step": 1500
146
+ },
147
+ {
148
+ "epoch": 0.11110339559752795,
149
+ "grad_norm": 0.0419921875,
150
+ "learning_rate": 0.001990122514534651,
151
+ "loss": 0.0868,
152
+ "step": 1600
153
+ },
154
+ {
155
+ "epoch": 0.11804735782237345,
156
+ "grad_norm": 0.039306640625,
157
+ "learning_rate": 0.0019865636510865464,
158
+ "loss": 0.0861,
159
+ "step": 1700
160
+ },
161
+ {
162
+ "epoch": 0.12499132004721894,
163
+ "grad_norm": 0.047119140625,
164
+ "learning_rate": 0.001982462542875576,
165
+ "loss": 0.0854,
166
+ "step": 1800
167
+ },
168
+ {
169
+ "epoch": 0.13193528227206444,
170
+ "grad_norm": 0.0390625,
171
+ "learning_rate": 0.001977821443992945,
172
+ "loss": 0.0837,
173
+ "step": 1900
174
+ },
175
+ {
176
+ "epoch": 0.13887924449690994,
177
+ "grad_norm": 0.04052734375,
178
+ "learning_rate": 0.001972642905324813,
179
+ "loss": 0.0818,
180
+ "step": 2000
181
+ },
182
+ {
183
+ "epoch": 0.13887924449690994,
184
+ "eval_covost2-en-de_loss": 1.4137890338897705,
185
+ "eval_covost2-en-de_runtime": 32.5714,
186
+ "eval_covost2-en-de_samples_per_second": 1.965,
187
+ "eval_covost2-en-de_steps_per_second": 0.061,
188
+ "step": 2000
189
+ },
190
+ {
191
+ "epoch": 0.13887924449690994,
192
+ "eval_covost2-zh-en_loss": 2.667837381362915,
193
+ "eval_covost2-zh-en_runtime": 31.1685,
194
+ "eval_covost2-zh-en_samples_per_second": 2.053,
195
+ "eval_covost2-zh-en_steps_per_second": 0.064,
196
+ "step": 2000
197
+ },
198
+ {
199
+ "epoch": 0.13887924449690994,
200
+ "eval_peoplespeech-clean-transcription_loss": 1.835880160331726,
201
+ "eval_peoplespeech-clean-transcription_runtime": 32.0265,
202
+ "eval_peoplespeech-clean-transcription_samples_per_second": 1.998,
203
+ "eval_peoplespeech-clean-transcription_steps_per_second": 0.062,
204
+ "step": 2000
205
+ },
206
+ {
207
+ "epoch": 0.14582320672175544,
208
+ "grad_norm": 0.039794921875,
209
+ "learning_rate": 0.0019669297731502505,
210
+ "loss": 0.0813,
211
+ "step": 2100
212
+ },
213
+ {
214
+ "epoch": 0.15276716894660092,
215
+ "grad_norm": 0.03515625,
216
+ "learning_rate": 0.00196068518757684,
217
+ "loss": 0.0811,
218
+ "step": 2200
219
+ },
220
+ {
221
+ "epoch": 0.15971113117144642,
222
+ "grad_norm": 0.04443359375,
223
+ "learning_rate": 0.001953912580814779,
224
+ "loss": 0.0793,
225
+ "step": 2300
226
+ },
227
+ {
228
+ "epoch": 0.16665509339629192,
229
+ "grad_norm": 0.037841796875,
230
+ "learning_rate": 0.0019466156752904343,
231
+ "loss": 0.0788,
232
+ "step": 2400
233
+ },
234
+ {
235
+ "epoch": 0.17359905562113742,
236
+ "grad_norm": 0.04052734375,
237
+ "learning_rate": 0.0019387984816003866,
238
+ "loss": 0.0783,
239
+ "step": 2500
240
+ },
241
+ {
242
+ "epoch": 0.18054301784598292,
243
+ "grad_norm": 0.03466796875,
244
+ "learning_rate": 0.0019304652963070869,
245
+ "loss": 0.0772,
246
+ "step": 2600
247
+ },
248
+ {
249
+ "epoch": 0.18748698007082842,
250
+ "grad_norm": 0.036376953125,
251
+ "learning_rate": 0.0019216206995773372,
252
+ "loss": 0.0771,
253
+ "step": 2700
254
+ },
255
+ {
256
+ "epoch": 0.19443094229567393,
257
+ "grad_norm": 0.0400390625,
258
+ "learning_rate": 0.0019122695526648968,
259
+ "loss": 0.0766,
260
+ "step": 2800
261
+ },
262
+ {
263
+ "epoch": 0.2013749045205194,
264
+ "grad_norm": 0.0361328125,
265
+ "learning_rate": 0.0019024169952385887,
266
+ "loss": 0.0753,
267
+ "step": 2900
268
+ },
269
+ {
270
+ "epoch": 0.2083188667453649,
271
+ "grad_norm": 0.03125,
272
+ "learning_rate": 0.0018920684425573864,
273
+ "loss": 0.075,
274
+ "step": 3000
275
+ },
276
+ {
277
+ "epoch": 0.2083188667453649,
278
+ "eval_covost2-en-de_loss": 1.3828500509262085,
279
+ "eval_covost2-en-de_runtime": 32.2972,
280
+ "eval_covost2-en-de_samples_per_second": 1.982,
281
+ "eval_covost2-en-de_steps_per_second": 0.062,
282
+ "step": 3000
283
+ },
284
+ {
285
+ "epoch": 0.2083188667453649,
286
+ "eval_covost2-zh-en_loss": 2.646721839904785,
287
+ "eval_covost2-zh-en_runtime": 31.0128,
288
+ "eval_covost2-zh-en_samples_per_second": 2.064,
289
+ "eval_covost2-zh-en_steps_per_second": 0.064,
290
+ "step": 3000
291
+ },
292
+ {
293
+ "epoch": 0.2083188667453649,
294
+ "eval_peoplespeech-clean-transcription_loss": 1.773127555847168,
295
+ "eval_peoplespeech-clean-transcription_runtime": 32.5192,
296
+ "eval_peoplespeech-clean-transcription_samples_per_second": 1.968,
297
+ "eval_peoplespeech-clean-transcription_steps_per_second": 0.062,
298
+ "step": 3000
299
+ },
300
+ {
301
+ "epoch": 0.2152628289702104,
302
+ "grad_norm": 0.03369140625,
303
+ "learning_rate": 0.0018812295824940284,
304
+ "loss": 0.0743,
305
+ "step": 3100
306
+ },
307
+ {
308
+ "epoch": 0.2222067911950559,
309
+ "grad_norm": 0.034912109375,
310
+ "learning_rate": 0.0018699063724087904,
311
+ "loss": 0.074,
312
+ "step": 3200
313
+ },
314
+ {
315
+ "epoch": 0.2291507534199014,
316
+ "grad_norm": 0.033203125,
317
+ "learning_rate": 0.0018581050358751443,
318
+ "loss": 0.0742,
319
+ "step": 3300
320
+ },
321
+ {
322
+ "epoch": 0.2360947156447469,
323
+ "grad_norm": 0.03857421875,
324
+ "learning_rate": 0.0018458320592590974,
325
+ "loss": 0.0742,
326
+ "step": 3400
327
+ },
328
+ {
329
+ "epoch": 0.24303867786959238,
330
+ "grad_norm": 0.033935546875,
331
+ "learning_rate": 0.0018330941881540914,
332
+ "loss": 0.0728,
333
+ "step": 3500
334
+ },
335
+ {
336
+ "epoch": 0.24998264009443788,
337
+ "grad_norm": 0.031005859375,
338
+ "learning_rate": 0.0018198984236734246,
339
+ "loss": 0.0728,
340
+ "step": 3600
341
+ },
342
+ {
343
+ "epoch": 0.2569266023192834,
344
+ "grad_norm": 0.030029296875,
345
+ "learning_rate": 0.0018062520186022297,
346
+ "loss": 0.0714,
347
+ "step": 3700
348
+ },
349
+ {
350
+ "epoch": 0.2638705645441289,
351
+ "grad_norm": 0.02734375,
352
+ "learning_rate": 0.0017921624734111292,
353
+ "loss": 0.071,
354
+ "step": 3800
355
+ },
356
+ {
357
+ "epoch": 0.2708145267689744,
358
+ "grad_norm": 0.03271484375,
359
+ "learning_rate": 0.001777637532133752,
360
+ "loss": 0.0705,
361
+ "step": 3900
362
+ },
363
+ {
364
+ "epoch": 0.2777584889938199,
365
+ "grad_norm": 0.035400390625,
366
+ "learning_rate": 0.0017626851781103819,
367
+ "loss": 0.0714,
368
+ "step": 4000
369
+ },
370
+ {
371
+ "epoch": 0.2777584889938199,
372
+ "eval_covost2-en-de_loss": 1.3778624534606934,
373
+ "eval_covost2-en-de_runtime": 32.6181,
374
+ "eval_covost2-en-de_samples_per_second": 1.962,
375
+ "eval_covost2-en-de_steps_per_second": 0.061,
376
+ "step": 4000
377
+ },
378
+ {
379
+ "epoch": 0.2777584889938199,
380
+ "eval_covost2-zh-en_loss": 2.6438870429992676,
381
+ "eval_covost2-zh-en_runtime": 31.4603,
382
+ "eval_covost2-zh-en_samples_per_second": 2.034,
383
+ "eval_covost2-zh-en_steps_per_second": 0.064,
384
+ "step": 4000
385
+ },
386
+ {
387
+ "epoch": 0.2777584889938199,
388
+ "eval_peoplespeech-clean-transcription_loss": 1.7361584901809692,
389
+ "eval_peoplespeech-clean-transcription_runtime": 32.442,
390
+ "eval_peoplespeech-clean-transcription_samples_per_second": 1.973,
391
+ "eval_peoplespeech-clean-transcription_steps_per_second": 0.062,
392
+ "step": 4000
393
+ },
394
+ {
395
+ "epoch": 0.2847024512186654,
396
+ "grad_norm": 0.0281982421875,
397
+ "learning_rate": 0.001747313629600077,
398
+ "loss": 0.0713,
399
+ "step": 4100
400
+ },
401
+ {
402
+ "epoch": 0.2916464134435109,
403
+ "grad_norm": 0.028076171875,
404
+ "learning_rate": 0.001731531335263669,
405
+ "loss": 0.0699,
406
+ "step": 4200
407
+ },
408
+ {
409
+ "epoch": 0.2985903756683564,
410
+ "grad_norm": 0.0277099609375,
411
+ "learning_rate": 0.0017153469695201276,
412
+ "loss": 0.0702,
413
+ "step": 4300
414
+ },
415
+ {
416
+ "epoch": 0.30553433789320184,
417
+ "grad_norm": 0.031982421875,
418
+ "learning_rate": 0.0016987694277788418,
419
+ "loss": 0.0692,
420
+ "step": 4400
421
+ },
422
+ {
423
+ "epoch": 0.31247830011804734,
424
+ "grad_norm": 0.02880859375,
425
+ "learning_rate": 0.001681807821550438,
426
+ "loss": 0.0686,
427
+ "step": 4500
428
+ },
429
+ {
430
+ "epoch": 0.31942226234289284,
431
+ "grad_norm": 0.0289306640625,
432
+ "learning_rate": 0.0016644714734388218,
433
+ "loss": 0.0698,
434
+ "step": 4600
435
+ },
436
+ {
437
+ "epoch": 0.32636622456773834,
438
+ "grad_norm": 0.029541015625,
439
+ "learning_rate": 0.0016467699120171987,
440
+ "loss": 0.0683,
441
+ "step": 4700
442
+ },
443
+ {
444
+ "epoch": 0.33331018679258384,
445
+ "grad_norm": 0.034423828125,
446
+ "learning_rate": 0.001628712866590885,
447
+ "loss": 0.0687,
448
+ "step": 4800
449
+ },
450
+ {
451
+ "epoch": 0.34025414901742934,
452
+ "grad_norm": 0.0289306640625,
453
+ "learning_rate": 0.0016103102618497923,
454
+ "loss": 0.0684,
455
+ "step": 4900
456
+ },
457
+ {
458
+ "epoch": 0.34719811124227484,
459
+ "grad_norm": 0.0263671875,
460
+ "learning_rate": 0.0015915722124135226,
461
+ "loss": 0.0681,
462
+ "step": 5000
463
+ },
464
+ {
465
+ "epoch": 0.34719811124227484,
466
+ "eval_covost2-en-de_loss": 1.3711879253387451,
467
+ "eval_covost2-en-de_runtime": 32.6293,
468
+ "eval_covost2-en-de_samples_per_second": 1.961,
469
+ "eval_covost2-en-de_steps_per_second": 0.061,
470
+ "step": 5000
471
+ },
472
+ {
473
+ "epoch": 0.34719811124227484,
474
+ "eval_covost2-zh-en_loss": 2.6346511840820312,
475
+ "eval_covost2-zh-en_runtime": 32.1513,
476
+ "eval_covost2-zh-en_samples_per_second": 1.991,
477
+ "eval_covost2-zh-en_steps_per_second": 0.062,
478
+ "step": 5000
479
+ },
480
+ {
481
+ "epoch": 0.34719811124227484,
482
+ "eval_peoplespeech-clean-transcription_loss": 1.7350472211837769,
483
+ "eval_peoplespeech-clean-transcription_runtime": 32.5813,
484
+ "eval_peoplespeech-clean-transcription_samples_per_second": 1.964,
485
+ "eval_peoplespeech-clean-transcription_steps_per_second": 0.061,
486
+ "step": 5000
487
+ },
488
+ {
489
+ "epoch": 0.35414207346712034,
490
+ "grad_norm": 0.028076171875,
491
+ "learning_rate": 0.001572509017272072,
492
+ "loss": 0.0693,
493
+ "step": 5100
494
+ },
495
+ {
496
+ "epoch": 0.36108603569196585,
497
+ "grad_norm": 0.030517578125,
498
+ "learning_rate": 0.0015531311541251993,
499
+ "loss": 0.0683,
500
+ "step": 5200
501
+ },
502
+ {
503
+ "epoch": 0.36802999791681135,
504
+ "grad_norm": 0.031494140625,
505
+ "learning_rate": 0.0015334492736235703,
506
+ "loss": 0.0677,
507
+ "step": 5300
508
+ },
509
+ {
510
+ "epoch": 0.37497396014165685,
511
+ "grad_norm": 0.0284423828125,
512
+ "learning_rate": 0.0015134741935148419,
513
+ "loss": 0.0669,
514
+ "step": 5400
515
+ },
516
+ {
517
+ "epoch": 0.38191792236650235,
518
+ "grad_norm": 0.0302734375,
519
+ "learning_rate": 0.0014932168926979072,
520
+ "loss": 0.0669,
521
+ "step": 5500
522
+ },
523
+ {
524
+ "epoch": 0.38886188459134785,
525
+ "grad_norm": 0.0260009765625,
526
+ "learning_rate": 0.0014726885051885652,
527
+ "loss": 0.0666,
528
+ "step": 5600
529
+ },
530
+ {
531
+ "epoch": 0.3958058468161933,
532
+ "grad_norm": 0.033447265625,
533
+ "learning_rate": 0.0014519003139999338,
534
+ "loss": 0.0659,
535
+ "step": 5700
536
+ },
537
+ {
538
+ "epoch": 0.4027498090410388,
539
+ "grad_norm": 0.0283203125,
540
+ "learning_rate": 0.0014308637449409706,
541
+ "loss": 0.0653,
542
+ "step": 5800
543
+ },
544
+ {
545
+ "epoch": 0.4096937712658843,
546
+ "grad_norm": 0.0283203125,
547
+ "learning_rate": 0.0014095903603365066,
548
+ "loss": 0.0662,
549
+ "step": 5900
550
+ },
551
+ {
552
+ "epoch": 0.4166377334907298,
553
+ "grad_norm": 0.0267333984375,
554
+ "learning_rate": 0.0013880918526722496,
555
+ "loss": 0.0665,
556
+ "step": 6000
557
+ },
558
+ {
559
+ "epoch": 0.4166377334907298,
560
+ "eval_covost2-en-de_loss": 1.3651559352874756,
561
+ "eval_covost2-en-de_runtime": 32.5621,
562
+ "eval_covost2-en-de_samples_per_second": 1.965,
563
+ "eval_covost2-en-de_steps_per_second": 0.061,
564
+ "step": 6000
565
+ },
566
+ {
567
+ "epoch": 0.4166377334907298,
568
+ "eval_covost2-zh-en_loss": 2.6372551918029785,
569
+ "eval_covost2-zh-en_runtime": 31.028,
570
+ "eval_covost2-zh-en_samples_per_second": 2.063,
571
+ "eval_covost2-zh-en_steps_per_second": 0.064,
572
+ "step": 6000
573
+ },
574
+ {
575
+ "epoch": 0.4166377334907298,
576
+ "eval_peoplespeech-clean-transcription_loss": 1.7209596633911133,
577
+ "eval_peoplespeech-clean-transcription_runtime": 32.6773,
578
+ "eval_peoplespeech-clean-transcription_samples_per_second": 1.959,
579
+ "eval_peoplespeech-clean-transcription_steps_per_second": 0.061,
580
+ "step": 6000
581
+ },
582
+ {
583
+ "epoch": 0.4235816957155753,
584
+ "grad_norm": 0.028564453125,
585
+ "learning_rate": 0.0013663800381682463,
586
+ "loss": 0.0658,
587
+ "step": 6100
588
+ },
589
+ {
590
+ "epoch": 0.4305256579404208,
591
+ "grad_norm": 0.0299072265625,
592
+ "learning_rate": 0.0013444668502843329,
593
+ "loss": 0.0657,
594
+ "step": 6200
595
+ },
596
+ {
597
+ "epoch": 0.4374696201652663,
598
+ "grad_norm": 0.0296630859375,
599
+ "learning_rate": 0.0013223643331611537,
600
+ "loss": 0.0655,
601
+ "step": 6300
602
+ },
603
+ {
604
+ "epoch": 0.4444135823901118,
605
+ "grad_norm": 0.0286865234375,
606
+ "learning_rate": 0.001300084635000341,
607
+ "loss": 0.0654,
608
+ "step": 6400
609
+ },
610
+ {
611
+ "epoch": 0.4513575446149573,
612
+ "grad_norm": 0.028564453125,
613
+ "learning_rate": 0.0012776400013875004,
614
+ "loss": 0.0655,
615
+ "step": 6500
616
+ },
617
+ {
618
+ "epoch": 0.4583015068398028,
619
+ "grad_norm": 0.030029296875,
620
+ "learning_rate": 0.0012550427685616766,
621
+ "loss": 0.0648,
622
+ "step": 6600
623
+ },
624
+ {
625
+ "epoch": 0.4652454690646483,
626
+ "grad_norm": 0.037109375,
627
+ "learning_rate": 0.0012323053566349834,
628
+ "loss": 0.0654,
629
+ "step": 6700
630
+ },
631
+ {
632
+ "epoch": 0.4721894312894938,
633
+ "grad_norm": 0.029296875,
634
+ "learning_rate": 0.0012094402627661448,
635
+ "loss": 0.0643,
636
+ "step": 6800
637
+ },
638
+ {
639
+ "epoch": 0.47913339351433926,
640
+ "grad_norm": 0.030517578125,
641
+ "learning_rate": 0.0011864600542916813,
642
+ "loss": 0.0646,
643
+ "step": 6900
644
+ },
645
+ {
646
+ "epoch": 0.48607735573918476,
647
+ "grad_norm": 0.037353515625,
648
+ "learning_rate": 0.0011633773618185302,
649
+ "loss": 0.0642,
650
+ "step": 7000
651
+ },
652
+ {
653
+ "epoch": 0.48607735573918476,
654
+ "eval_covost2-en-de_loss": 1.3594859838485718,
655
+ "eval_covost2-en-de_runtime": 32.6807,
656
+ "eval_covost2-en-de_samples_per_second": 1.958,
657
+ "eval_covost2-en-de_steps_per_second": 0.061,
658
+ "step": 7000
659
+ },
660
+ {
661
+ "epoch": 0.48607735573918476,
662
+ "eval_covost2-zh-en_loss": 2.626713514328003,
663
+ "eval_covost2-zh-en_runtime": 31.0228,
664
+ "eval_covost2-zh-en_samples_per_second": 2.063,
665
+ "eval_covost2-zh-en_steps_per_second": 0.064,
666
+ "step": 7000
667
+ },
668
+ {
669
+ "epoch": 0.48607735573918476,
670
+ "eval_peoplespeech-clean-transcription_loss": 1.693739652633667,
671
+ "eval_peoplespeech-clean-transcription_runtime": 31.9776,
672
+ "eval_peoplespeech-clean-transcription_samples_per_second": 2.001,
673
+ "eval_peoplespeech-clean-transcription_steps_per_second": 0.063,
674
+ "step": 7000
675
+ },
676
+ {
677
+ "epoch": 0.49302131796403026,
678
+ "grad_norm": 0.02978515625,
679
+ "learning_rate": 0.0011402048722818862,
680
+ "loss": 0.0656,
681
+ "step": 7100
682
+ },
683
+ {
684
+ "epoch": 0.49996528018887576,
685
+ "grad_norm": 0.0281982421875,
686
+ "learning_rate": 0.0011169553219720827,
687
+ "loss": 0.064,
688
+ "step": 7200
689
+ },
690
+ {
691
+ "epoch": 0.5069092424137213,
692
+ "grad_norm": 0.027099609375,
693
+ "learning_rate": 0.001093641489534351,
694
+ "loss": 0.0648,
695
+ "step": 7300
696
+ },
697
+ {
698
+ "epoch": 0.5138532046385668,
699
+ "grad_norm": 0.02783203125,
700
+ "learning_rate": 0.001070276188945293,
701
+ "loss": 0.0642,
702
+ "step": 7400
703
+ },
704
+ {
705
+ "epoch": 0.5207971668634123,
706
+ "grad_norm": 0.0281982421875,
707
+ "learning_rate": 0.00104687226246994,
708
+ "loss": 0.0635,
709
+ "step": 7500
710
+ },
711
+ {
712
+ "epoch": 0.5277411290882578,
713
+ "grad_norm": 0.030517578125,
714
+ "learning_rate": 0.0010234425736032607,
715
+ "loss": 0.0644,
716
+ "step": 7600
717
+ },
718
+ {
719
+ "epoch": 0.5346850913131033,
720
+ "grad_norm": 0.02978515625,
721
+ "learning_rate": 0.001,
722
+ "loss": 0.0645,
723
+ "step": 7700
724
+ },
725
+ {
726
+ "epoch": 0.5416290535379488,
727
+ "grad_norm": 0.0250244140625,
728
+ "learning_rate": 0.0009765574263967396,
729
+ "loss": 0.0635,
730
+ "step": 7800
731
+ },
732
+ {
733
+ "epoch": 0.5485730157627943,
734
+ "grad_norm": 0.033203125,
735
+ "learning_rate": 0.0009531277375300599,
736
+ "loss": 0.0635,
737
+ "step": 7900
738
+ },
739
+ {
740
+ "epoch": 0.5555169779876398,
741
+ "grad_norm": 0.03173828125,
742
+ "learning_rate": 0.0009297238110547074,
743
+ "loss": 0.0624,
744
+ "step": 8000
745
+ },
746
+ {
747
+ "epoch": 0.5555169779876398,
748
+ "eval_covost2-en-de_loss": 1.3578505516052246,
749
+ "eval_covost2-en-de_runtime": 32.6942,
750
+ "eval_covost2-en-de_samples_per_second": 1.958,
751
+ "eval_covost2-en-de_steps_per_second": 0.061,
752
+ "step": 8000
753
+ },
754
+ {
755
+ "epoch": 0.5555169779876398,
756
+ "eval_covost2-zh-en_loss": 2.6352272033691406,
757
+ "eval_covost2-zh-en_runtime": 32.2689,
758
+ "eval_covost2-zh-en_samples_per_second": 1.983,
759
+ "eval_covost2-zh-en_steps_per_second": 0.062,
760
+ "step": 8000
761
+ },
762
+ {
763
+ "epoch": 0.5555169779876398,
764
+ "eval_peoplespeech-clean-transcription_loss": 1.6875255107879639,
765
+ "eval_peoplespeech-clean-transcription_runtime": 34.4533,
766
+ "eval_peoplespeech-clean-transcription_samples_per_second": 1.858,
767
+ "eval_peoplespeech-clean-transcription_steps_per_second": 0.058,
768
+ "step": 8000
769
+ },
770
+ {
771
+ "epoch": 0.5624609402124853,
772
+ "grad_norm": 0.0274658203125,
773
+ "learning_rate": 0.0009063585104656494,
774
+ "loss": 0.064,
775
+ "step": 8100
776
+ },
777
+ {
778
+ "epoch": 0.5694049024373308,
779
+ "grad_norm": 0.033935546875,
780
+ "learning_rate": 0.0008830446780279176,
781
+ "loss": 0.0626,
782
+ "step": 8200
783
+ },
784
+ {
785
+ "epoch": 0.5763488646621763,
786
+ "grad_norm": 0.03955078125,
787
+ "learning_rate": 0.0008597951277181142,
788
+ "loss": 0.0638,
789
+ "step": 8300
790
+ },
791
+ {
792
+ "epoch": 0.5832928268870218,
793
+ "grad_norm": 0.02734375,
794
+ "learning_rate": 0.0008366226381814697,
795
+ "loss": 0.0632,
796
+ "step": 8400
797
+ },
798
+ {
799
+ "epoch": 0.5902367891118673,
800
+ "grad_norm": 0.0269775390625,
801
+ "learning_rate": 0.000813539945708319,
802
+ "loss": 0.0624,
803
+ "step": 8500
804
+ },
805
+ {
806
+ "epoch": 0.5971807513367128,
807
+ "grad_norm": 0.028564453125,
808
+ "learning_rate": 0.0007905597372338558,
809
+ "loss": 0.063,
810
+ "step": 8600
811
+ },
812
+ {
813
+ "epoch": 0.6041247135615583,
814
+ "grad_norm": 0.029541015625,
815
+ "learning_rate": 0.0007676946433650169,
816
+ "loss": 0.0626,
817
+ "step": 8700
818
+ },
819
+ {
820
+ "epoch": 0.6110686757864037,
821
+ "grad_norm": 0.0272216796875,
822
+ "learning_rate": 0.0007449572314383236,
823
+ "loss": 0.0634,
824
+ "step": 8800
825
+ },
826
+ {
827
+ "epoch": 0.6180126380112492,
828
+ "grad_norm": 0.034423828125,
829
+ "learning_rate": 0.0007223599986124993,
830
+ "loss": 0.0625,
831
+ "step": 8900
832
+ },
833
+ {
834
+ "epoch": 0.6249566002360947,
835
+ "grad_norm": 0.03173828125,
836
+ "learning_rate": 0.0006999153649996595,
837
+ "loss": 0.0618,
838
+ "step": 9000
839
+ },
840
+ {
841
+ "epoch": 0.6249566002360947,
842
+ "eval_covost2-en-de_loss": 1.3503832817077637,
843
+ "eval_covost2-en-de_runtime": 32.9543,
844
+ "eval_covost2-en-de_samples_per_second": 1.942,
845
+ "eval_covost2-en-de_steps_per_second": 0.061,
846
+ "step": 9000
847
+ },
848
+ {
849
+ "epoch": 0.6249566002360947,
850
+ "eval_covost2-zh-en_loss": 2.6205379962921143,
851
+ "eval_covost2-zh-en_runtime": 31.3271,
852
+ "eval_covost2-zh-en_samples_per_second": 2.043,
853
+ "eval_covost2-zh-en_steps_per_second": 0.064,
854
+ "step": 9000
855
+ },
856
+ {
857
+ "epoch": 0.6249566002360947,
858
+ "eval_peoplespeech-clean-transcription_loss": 1.685594916343689,
859
+ "eval_peoplespeech-clean-transcription_runtime": 32.7924,
860
+ "eval_peoplespeech-clean-transcription_samples_per_second": 1.952,
861
+ "eval_peoplespeech-clean-transcription_steps_per_second": 0.061,
862
+ "step": 9000
863
+ },
864
+ {
865
+ "epoch": 0.6319005624609402,
866
+ "grad_norm": 0.034912109375,
867
+ "learning_rate": 0.0006776356668388464,
868
+ "loss": 0.0614,
869
+ "step": 9100
870
+ },
871
+ {
872
+ "epoch": 0.6388445246857857,
873
+ "grad_norm": 0.0277099609375,
874
+ "learning_rate": 0.0006555331497156671,
875
+ "loss": 0.0616,
876
+ "step": 9200
877
+ },
878
+ {
879
+ "epoch": 0.6457884869106312,
880
+ "grad_norm": 0.031005859375,
881
+ "learning_rate": 0.0006336199618317538,
882
+ "loss": 0.0614,
883
+ "step": 9300
884
+ },
885
+ {
886
+ "epoch": 0.6527324491354767,
887
+ "grad_norm": 0.0322265625,
888
+ "learning_rate": 0.0006119081473277501,
889
+ "loss": 0.0616,
890
+ "step": 9400
891
+ },
892
+ {
893
+ "epoch": 0.6596764113603222,
894
+ "grad_norm": 0.029296875,
895
+ "learning_rate": 0.0005904096396634935,
896
+ "loss": 0.0609,
897
+ "step": 9500
898
+ },
899
+ {
900
+ "epoch": 0.6666203735851677,
901
+ "grad_norm": 0.0284423828125,
902
+ "learning_rate": 0.0005691362550590297,
903
+ "loss": 0.0609,
904
+ "step": 9600
905
+ },
906
+ {
907
+ "epoch": 0.6735643358100132,
908
+ "grad_norm": 0.0296630859375,
909
+ "learning_rate": 0.0005480996860000663,
910
+ "loss": 0.0611,
911
+ "step": 9700
912
+ },
913
+ {
914
+ "epoch": 0.6805082980348587,
915
+ "grad_norm": 0.031494140625,
916
+ "learning_rate": 0.0005273114948114346,
917
+ "loss": 0.0612,
918
+ "step": 9800
919
+ },
920
+ {
921
+ "epoch": 0.6874522602597042,
922
+ "grad_norm": 0.028564453125,
923
+ "learning_rate": 0.0005067831073020928,
924
+ "loss": 0.0615,
925
+ "step": 9900
926
+ },
927
+ {
928
+ "epoch": 0.6943962224845497,
929
+ "grad_norm": 0.02783203125,
930
+ "learning_rate": 0.00048652580648515787,
931
+ "loss": 0.0621,
932
+ "step": 10000
933
+ },
934
+ {
935
+ "epoch": 0.6943962224845497,
936
+ "eval_covost2-en-de_loss": 1.3505414724349976,
937
+ "eval_covost2-en-de_runtime": 32.9697,
938
+ "eval_covost2-en-de_samples_per_second": 1.941,
939
+ "eval_covost2-en-de_steps_per_second": 0.061,
940
+ "step": 10000
941
+ },
942
+ {
943
+ "epoch": 0.6943962224845497,
944
+ "eval_covost2-zh-en_loss": 2.613917827606201,
945
+ "eval_covost2-zh-en_runtime": 31.7013,
946
+ "eval_covost2-zh-en_samples_per_second": 2.019,
947
+ "eval_covost2-zh-en_steps_per_second": 0.063,
948
+ "step": 10000
949
+ },
950
+ {
951
+ "epoch": 0.6943962224845497,
952
+ "eval_peoplespeech-clean-transcription_loss": 1.6754916906356812,
953
+ "eval_peoplespeech-clean-transcription_runtime": 33.2239,
954
+ "eval_peoplespeech-clean-transcription_samples_per_second": 1.926,
955
+ "eval_peoplespeech-clean-transcription_steps_per_second": 0.06,
956
+ "step": 10000
957
+ },
958
+ {
959
+ "epoch": 0.7013401847093952,
960
+ "grad_norm": 0.0299072265625,
961
+ "learning_rate": 0.0004665507263764299,
962
+ "loss": 0.0614,
963
+ "step": 10100
964
+ },
965
+ {
966
+ "epoch": 0.7082841469342407,
967
+ "grad_norm": 0.0272216796875,
968
+ "learning_rate": 0.0004468688458748006,
969
+ "loss": 0.0616,
970
+ "step": 10200
971
+ },
972
+ {
973
+ "epoch": 0.7152281091590862,
974
+ "grad_norm": 0.03662109375,
975
+ "learning_rate": 0.0004274909827279283,
976
+ "loss": 0.0617,
977
+ "step": 10300
978
+ },
979
+ {
980
+ "epoch": 0.7221720713839317,
981
+ "grad_norm": 0.028564453125,
982
+ "learning_rate": 0.0004084277875864776,
983
+ "loss": 0.0612,
984
+ "step": 10400
985
+ },
986
+ {
987
+ "epoch": 0.7291160336087772,
988
+ "grad_norm": 0.035400390625,
989
+ "learning_rate": 0.00038968973815020803,
990
+ "loss": 0.0615,
991
+ "step": 10500
992
+ },
993
+ {
994
+ "epoch": 0.7360599958336227,
995
+ "grad_norm": 0.0322265625,
996
+ "learning_rate": 0.00037128713340911534,
997
+ "loss": 0.0607,
998
+ "step": 10600
999
+ },
1000
+ {
1001
+ "epoch": 0.7430039580584682,
1002
+ "grad_norm": 0.050537109375,
1003
+ "learning_rate": 0.00035323008798280133,
1004
+ "loss": 0.0606,
1005
+ "step": 10700
1006
+ },
1007
+ {
1008
+ "epoch": 0.7499479202833137,
1009
+ "grad_norm": 0.033203125,
1010
+ "learning_rate": 0.00033552852656117837,
1011
+ "loss": 0.0606,
1012
+ "step": 10800
1013
+ },
1014
+ {
1015
+ "epoch": 0.7568918825081592,
1016
+ "grad_norm": 0.0308837890625,
1017
+ "learning_rate": 0.00031819217844956217,
1018
+ "loss": 0.0599,
1019
+ "step": 10900
1020
+ },
1021
+ {
1022
+ "epoch": 0.7638358447330047,
1023
+ "grad_norm": 0.0283203125,
1024
+ "learning_rate": 0.00030123057222115836,
1025
+ "loss": 0.061,
1026
+ "step": 11000
1027
+ },
1028
+ {
1029
+ "epoch": 0.7638358447330047,
1030
+ "eval_covost2-en-de_loss": 1.3495559692382812,
1031
+ "eval_covost2-en-de_runtime": 32.3219,
1032
+ "eval_covost2-en-de_samples_per_second": 1.98,
1033
+ "eval_covost2-en-de_steps_per_second": 0.062,
1034
+ "step": 11000
1035
+ },
1036
+ {
1037
+ "epoch": 0.7638358447330047,
1038
+ "eval_covost2-zh-en_loss": 2.6154580116271973,
1039
+ "eval_covost2-zh-en_runtime": 31.7065,
1040
+ "eval_covost2-zh-en_samples_per_second": 2.019,
1041
+ "eval_covost2-zh-en_steps_per_second": 0.063,
1042
+ "step": 11000
1043
+ },
1044
+ {
1045
+ "epoch": 0.7638358447330047,
1046
+ "eval_peoplespeech-clean-transcription_loss": 1.673677682876587,
1047
+ "eval_peoplespeech-clean-transcription_runtime": 32.5731,
1048
+ "eval_peoplespeech-clean-transcription_samples_per_second": 1.965,
1049
+ "eval_peoplespeech-clean-transcription_steps_per_second": 0.061,
1050
+ "step": 11000
1051
+ },
1052
+ {
1053
+ "epoch": 0.7707798069578502,
1054
+ "grad_norm": 0.029541015625,
1055
+ "learning_rate": 0.0002846530304798727,
1056
+ "loss": 0.0602,
1057
+ "step": 11100
1058
+ },
1059
+ {
1060
+ "epoch": 0.7777237691826957,
1061
+ "grad_norm": 0.0294189453125,
1062
+ "learning_rate": 0.00026846866473633125,
1063
+ "loss": 0.0608,
1064
+ "step": 11200
1065
+ },
1066
+ {
1067
+ "epoch": 0.7846677314075411,
1068
+ "grad_norm": 0.0264892578125,
1069
+ "learning_rate": 0.00025268637039992293,
1070
+ "loss": 0.0611,
1071
+ "step": 11300
1072
+ },
1073
+ {
1074
+ "epoch": 0.7916116936323866,
1075
+ "grad_norm": 0.024658203125,
1076
+ "learning_rate": 0.00023731482188961818,
1077
+ "loss": 0.0602,
1078
+ "step": 11400
1079
+ },
1080
+ {
1081
+ "epoch": 0.7985556558572321,
1082
+ "grad_norm": 0.0294189453125,
1083
+ "learning_rate": 0.00022236246786624792,
1084
+ "loss": 0.0608,
1085
+ "step": 11500
1086
+ },
1087
+ {
1088
+ "epoch": 0.8054996180820776,
1089
+ "grad_norm": 0.0322265625,
1090
+ "learning_rate": 0.00020783752658887068,
1091
+ "loss": 0.0602,
1092
+ "step": 11600
1093
+ },
1094
+ {
1095
+ "epoch": 0.8124435803069231,
1096
+ "grad_norm": 0.035888671875,
1097
+ "learning_rate": 0.0001937479813977703,
1098
+ "loss": 0.0607,
1099
+ "step": 11700
1100
+ },
1101
+ {
1102
+ "epoch": 0.8193875425317686,
1103
+ "grad_norm": 0.0262451171875,
1104
+ "learning_rate": 0.00018010157632657541,
1105
+ "loss": 0.0611,
1106
+ "step": 11800
1107
+ },
1108
+ {
1109
+ "epoch": 0.8263315047566141,
1110
+ "grad_norm": 0.0296630859375,
1111
+ "learning_rate": 0.00016690581184590858,
1112
+ "loss": 0.0617,
1113
+ "step": 11900
1114
+ },
1115
+ {
1116
+ "epoch": 0.8332754669814596,
1117
+ "grad_norm": 0.03564453125,
1118
+ "learning_rate": 0.00015416794074090258,
1119
+ "loss": 0.0615,
1120
+ "step": 12000
1121
+ },
1122
+ {
1123
+ "epoch": 0.8332754669814596,
1124
+ "eval_covost2-en-de_loss": 1.3493196964263916,
1125
+ "eval_covost2-en-de_runtime": 32.732,
1126
+ "eval_covost2-en-de_samples_per_second": 1.955,
1127
+ "eval_covost2-en-de_steps_per_second": 0.061,
1128
+ "step": 12000
1129
+ },
1130
+ {
1131
+ "epoch": 0.8332754669814596,
1132
+ "eval_covost2-zh-en_loss": 2.615288734436035,
1133
+ "eval_covost2-zh-en_runtime": 31.3635,
1134
+ "eval_covost2-zh-en_samples_per_second": 2.041,
1135
+ "eval_covost2-zh-en_steps_per_second": 0.064,
1136
+ "step": 12000
1137
+ },
1138
+ {
1139
+ "epoch": 0.8332754669814596,
1140
+ "eval_peoplespeech-clean-transcription_loss": 1.6742818355560303,
1141
+ "eval_peoplespeech-clean-transcription_runtime": 32.2391,
1142
+ "eval_peoplespeech-clean-transcription_samples_per_second": 1.985,
1143
+ "eval_peoplespeech-clean-transcription_steps_per_second": 0.062,
1144
+ "step": 12000
1145
+ },
1146
+ {
1147
+ "epoch": 0.8402194292063051,
1148
+ "grad_norm": 0.033203125,
1149
+ "learning_rate": 0.00014189496412485593,
1150
+ "loss": 0.061,
1151
+ "step": 12100
1152
+ },
1153
+ {
1154
+ "epoch": 0.8471633914311506,
1155
+ "grad_norm": 0.0322265625,
1156
+ "learning_rate": 0.00013009362759120978,
1157
+ "loss": 0.0601,
1158
+ "step": 12200
1159
+ },
1160
+ {
1161
+ "epoch": 0.8541073536559961,
1162
+ "grad_norm": 0.028076171875,
1163
+ "learning_rate": 0.00011877041750597173,
1164
+ "loss": 0.0613,
1165
+ "step": 12300
1166
+ },
1167
+ {
1168
+ "epoch": 0.8610513158808416,
1169
+ "grad_norm": 0.0257568359375,
1170
+ "learning_rate": 0.00010793155744261352,
1171
+ "loss": 0.0614,
1172
+ "step": 12400
1173
+ },
1174
+ {
1175
+ "epoch": 0.8679952781056871,
1176
+ "grad_norm": 0.02783203125,
1177
+ "learning_rate": 9.758300476141169e-05,
1178
+ "loss": 0.0606,
1179
+ "step": 12500
1180
+ },
1181
+ {
1182
+ "epoch": 0.8749392403305326,
1183
+ "grad_norm": 0.0302734375,
1184
+ "learning_rate": 8.773044733510338e-05,
1185
+ "loss": 0.0604,
1186
+ "step": 12600
1187
+ },
1188
+ {
1189
+ "epoch": 0.8818832025553781,
1190
+ "grad_norm": 0.02880859375,
1191
+ "learning_rate": 7.837930042266262e-05,
1192
+ "loss": 0.0601,
1193
+ "step": 12700
1194
+ },
1195
+ {
1196
+ "epoch": 0.8888271647802236,
1197
+ "grad_norm": 0.02880859375,
1198
+ "learning_rate": 6.953470369291348e-05,
1199
+ "loss": 0.0607,
1200
+ "step": 12800
1201
+ },
1202
+ {
1203
+ "epoch": 0.8957711270050691,
1204
+ "grad_norm": 0.027587890625,
1205
+ "learning_rate": 6.120151839961363e-05,
1206
+ "loss": 0.0606,
1207
+ "step": 12900
1208
+ },
1209
+ {
1210
+ "epoch": 0.9027150892299146,
1211
+ "grad_norm": 0.036865234375,
1212
+ "learning_rate": 5.338432470956589e-05,
1213
+ "loss": 0.0608,
1214
+ "step": 13000
1215
+ },
1216
+ {
1217
+ "epoch": 0.9027150892299146,
1218
+ "eval_covost2-en-de_loss": 1.3490619659423828,
1219
+ "eval_covost2-en-de_runtime": 33.0003,
1220
+ "eval_covost2-en-de_samples_per_second": 1.939,
1221
+ "eval_covost2-en-de_steps_per_second": 0.061,
1222
+ "step": 13000
1223
+ },
1224
+ {
1225
+ "epoch": 0.9027150892299146,
1226
+ "eval_covost2-zh-en_loss": 2.615211248397827,
1227
+ "eval_covost2-zh-en_runtime": 31.7808,
1228
+ "eval_covost2-zh-en_samples_per_second": 2.014,
1229
+ "eval_covost2-zh-en_steps_per_second": 0.063,
1230
+ "step": 13000
1231
+ },
1232
+ {
1233
+ "epoch": 0.9027150892299146,
1234
+ "eval_peoplespeech-clean-transcription_loss": 1.6742777824401855,
1235
+ "eval_peoplespeech-clean-transcription_runtime": 32.3145,
1236
+ "eval_peoplespeech-clean-transcription_samples_per_second": 1.981,
1237
+ "eval_peoplespeech-clean-transcription_steps_per_second": 0.062,
1238
+ "step": 13000
1239
+ },
1240
+ {
1241
+ "epoch": 0.9096590514547601,
1242
+ "grad_norm": 0.0302734375,
1243
+ "learning_rate": 4.6087419185220966e-05,
1244
+ "loss": 0.06,
1245
+ "step": 13100
1246
+ },
1247
+ {
1248
+ "epoch": 0.9166030136796056,
1249
+ "grad_norm": 0.028076171875,
1250
+ "learning_rate": 3.931481242315993e-05,
1251
+ "loss": 0.0601,
1252
+ "step": 13200
1253
+ },
1254
+ {
1255
+ "epoch": 0.9235469759044511,
1256
+ "grad_norm": 0.03759765625,
1257
+ "learning_rate": 3.307022684974936e-05,
1258
+ "loss": 0.0602,
1259
+ "step": 13300
1260
+ },
1261
+ {
1262
+ "epoch": 0.9304909381292966,
1263
+ "grad_norm": 0.02978515625,
1264
+ "learning_rate": 2.7357094675186987e-05,
1265
+ "loss": 0.0605,
1266
+ "step": 13400
1267
+ },
1268
+ {
1269
+ "epoch": 0.9374349003541421,
1270
+ "grad_norm": 0.031005859375,
1271
+ "learning_rate": 2.2178556007054874e-05,
1272
+ "loss": 0.061,
1273
+ "step": 13500
1274
+ },
1275
+ {
1276
+ "epoch": 0.9443788625789876,
1277
+ "grad_norm": 0.0289306640625,
1278
+ "learning_rate": 1.7537457124423894e-05,
1279
+ "loss": 0.0606,
1280
+ "step": 13600
1281
+ },
1282
+ {
1283
+ "epoch": 0.9513228248038331,
1284
+ "grad_norm": 0.028076171875,
1285
+ "learning_rate": 1.3436348913453578e-05,
1286
+ "loss": 0.061,
1287
+ "step": 13700
1288
+ },
1289
+ {
1290
+ "epoch": 0.9582667870286785,
1291
+ "grad_norm": 0.0289306640625,
1292
+ "learning_rate": 9.877485465349056e-06,
1293
+ "loss": 0.0606,
1294
+ "step": 13800
1295
+ },
1296
+ {
1297
+ "epoch": 0.965210749253524,
1298
+ "grad_norm": 0.0291748046875,
1299
+ "learning_rate": 6.862822837445881e-06,
1300
+ "loss": 0.0613,
1301
+ "step": 13900
1302
+ },
1303
+ {
1304
+ "epoch": 0.9721547114783695,
1305
+ "grad_norm": 0.0302734375,
1306
+ "learning_rate": 4.394017978101905e-06,
1307
+ "loss": 0.0615,
1308
+ "step": 14000
1309
+ },
1310
+ {
1311
+ "epoch": 0.9721547114783695,
1312
+ "eval_covost2-en-de_loss": 1.3485227823257446,
1313
+ "eval_covost2-en-de_runtime": 32.3946,
1314
+ "eval_covost2-en-de_samples_per_second": 1.976,
1315
+ "eval_covost2-en-de_steps_per_second": 0.062,
1316
+ "step": 14000
1317
+ },
1318
+ {
1319
+ "epoch": 0.9721547114783695,
1320
+ "eval_covost2-zh-en_loss": 2.614840269088745,
1321
+ "eval_covost2-zh-en_runtime": 31.6743,
1322
+ "eval_covost2-zh-en_samples_per_second": 2.021,
1323
+ "eval_covost2-zh-en_steps_per_second": 0.063,
1324
+ "step": 14000
1325
+ },
1326
+ {
1327
+ "epoch": 0.9721547114783695,
1328
+ "eval_peoplespeech-clean-transcription_loss": 1.673971176147461,
1329
+ "eval_peoplespeech-clean-transcription_runtime": 32.2005,
1330
+ "eval_peoplespeech-clean-transcription_samples_per_second": 1.988,
1331
+ "eval_peoplespeech-clean-transcription_steps_per_second": 0.062,
1332
+ "step": 14000
1333
+ },
1334
+ {
1335
+ "epoch": 0.979098673703215,
1336
+ "grad_norm": 0.027587890625,
1337
+ "learning_rate": 2.472427815989886e-06,
1338
+ "loss": 0.0607,
1339
+ "step": 14100
1340
+ },
1341
+ {
1342
+ "epoch": 0.9860426359280605,
1343
+ "grad_norm": 0.031982421875,
1344
+ "learning_rate": 1.099108514288627e-06,
1345
+ "loss": 0.0608,
1346
+ "step": 14200
1347
+ },
1348
+ {
1349
+ "epoch": 0.992986598152906,
1350
+ "grad_norm": 0.03466796875,
1351
+ "learning_rate": 2.748148901841052e-07,
1352
+ "loss": 0.0606,
1353
+ "step": 14300
1354
+ },
1355
+ {
1356
+ "epoch": 0.9999305603777515,
1357
+ "grad_norm": 0.0277099609375,
1358
+ "learning_rate": 0.0,
1359
+ "loss": 0.0608,
1360
+ "step": 14400
1361
+ }
1362
+ ],
1363
+ "logging_steps": 100,
1364
+ "max_steps": 14400,
1365
+ "num_input_tokens_seen": 0,
1366
+ "num_train_epochs": 1,
1367
+ "save_steps": 3600,
1368
+ "stateful_callbacks": {
1369
+ "TrainerControl": {
1370
+ "args": {
1371
+ "should_epoch_stop": false,
1372
+ "should_evaluate": false,
1373
+ "should_log": false,
1374
+ "should_save": true,
1375
+ "should_training_stop": true
1376
+ },
1377
+ "attributes": {}
1378
+ }
1379
+ },
1380
+ "total_flos": 3.7890136187397734e+18,
1381
+ "train_batch_size": 96,
1382
+ "trial_name": null,
1383
+ "trial_params": null
1384
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:526c930de4f2a14f4d9943636fb014003cb001081aed1fbeba40b7395ec5812b
3
+ size 5688
ultravox_config.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import dataclasses
2
+ from enum import Enum
3
+ from typing import Any, Dict, List, Optional
4
+
5
+ import transformers
6
+
7
+
8
+ @dataclasses.dataclass
9
+ class LoraConfigSimplified:
10
+ """
11
+ Low Rank Approximation (LoRA) configuration.
12
+
13
+ Used for language and audio models separately.
14
+ """
15
+
16
+ # The rank of the approximation
17
+ r: int = 0
18
+ lora_alpha: float = 8
19
+ target_modules: Optional[List[str]] = dataclasses.field(
20
+ default_factory=lambda: ["k_proj", "q_proj", "linear_k", "linear_q"]
21
+ )
22
+
23
+
24
+ class LossFunction(str, Enum):
25
+ CrossEntropy = "ce"
26
+ KL_Divergence = "kl"
27
+
28
+
29
+ @dataclasses.dataclass
30
+ class LossConfig:
31
+ loss_function: LossFunction = LossFunction.KL_Divergence
32
+ kl_temperature: float = 2.0
33
+
34
+ @property
35
+ def requires_alt_fields(self):
36
+ return self.loss_function == LossFunction.KL_Divergence
37
+
38
+
39
+ class UltravoxConfig(transformers.PretrainedConfig):
40
+ r"""
41
+ This is the configuration class to store the configuration of a [`UltravoxForConditionalGeneration`]. It is used to instantiate an
42
+ Ultravox model according to the specified arguments, defining the model architecture.
43
+
44
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
45
+ documentation from [`PretrainedConfig`] for more information.
46
+
47
+ Args:
48
+ audio_config (`Wav2Vec2Config`, *optional*):
49
+ Custom audio config or dict
50
+ text_config (`Union[AutoConfig, dict]`, *optional*):
51
+ The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`.
52
+ ignore_index (`int`, *optional*, defaults to -100):
53
+ The ignore index for the loss function.
54
+ audio_token_index (`int`, *optional*, defaults to 32000):
55
+ The audio token index to encode the audio prompt.
56
+ stack_factor (`int`, *optional*, defaults to 8):
57
+ Audio downsampling factor for the multimodal projector.
58
+ norm_init (`float`, *optional*, defaults to 0.4):
59
+ The initialization value for the layer normalization.
60
+ projector_act (`str`, *optional*, defaults to `"swiglu"`):
61
+ The activation function used by the multimodal projector.
62
+ text_model_lora_config (`LoraConfigSimplified`, *optional*):
63
+ The LoRA configuration for finetuning the text model.
64
+ audio_model_lora_config (`LoraConfigSimplified`, *optional*):
65
+ The LoRA configuration for finetuning the audio model.
66
+ audio_latency_block_size (`int`, *optional*, defaults to `None`):
67
+ The latency block size for simulating audio streaming.
68
+
69
+
70
+ Example:
71
+
72
+ ```python
73
+ >>> from transformers import UltravoxForConditionalGeneration, Wav2Vec2Config, UltravoxConfig, LlamaConfig
74
+
75
+ >>> # Initializing an audio encoder config
76
+ >>> audio_config = Wav2Vec2Config()
77
+
78
+ >>> # Initializing a Llama config
79
+ >>> text_config = LlamaConfig()
80
+
81
+ >>> # Initializing a default configuration
82
+ >>> configuration = UltravoxConfig(audio_config, text_config)
83
+
84
+ >>> # Initializing a completely untrained model from the configuration
85
+ >>> model = UltravoxForConditionalGeneration(configuration)
86
+
87
+ >>> # Accessing the model configuration
88
+ >>> configuration = model.config
89
+
90
+ >>> # Initialize a model from pretrained checkpoints and random projector weights
91
+ >>> config = UltravoxConfig(audio_model_id="facebook/wav2vec2-base-960h", text_model_id="meta-llama/Llama-2-7b-chat-hf")
92
+ ```"""
93
+
94
+ model_type = "ultravox"
95
+ is_composition = False
96
+
97
+ def __init__(
98
+ self,
99
+ audio_config: Optional[Dict[str, Any]] = None,
100
+ text_config: Optional[Dict[str, Any]] = None,
101
+ audio_model_id: Optional[str] = None,
102
+ text_model_id: Optional[str] = None,
103
+ ignore_index: int = -100,
104
+ hidden_size: int = 4096,
105
+ stack_factor: int = 8,
106
+ norm_init: float = 0.4,
107
+ projector_act: str = "swiglu",
108
+ text_model_lora_config: Optional[LoraConfigSimplified] = None,
109
+ audio_model_lora_config: Optional[LoraConfigSimplified] = None,
110
+ audio_latency_block_size: Optional[int] = None,
111
+ **kwargs,
112
+ ):
113
+ self.ignore_index = ignore_index
114
+
115
+ self.audio_model_id = audio_model_id
116
+ self.text_model_id = text_model_id
117
+
118
+ self.hidden_size = hidden_size
119
+ self.stack_factor = stack_factor
120
+ self.norm_init = norm_init
121
+ self.projector_act = projector_act
122
+
123
+ if text_model_id is not None:
124
+ self.text_config: transformers.LlamaConfig = (
125
+ transformers.AutoConfig.from_pretrained(text_model_id)
126
+ )
127
+ else:
128
+ text_config = text_config or {}
129
+ self.text_config = transformers.CONFIG_MAPPING[
130
+ text_config.get("model_type", "llama")
131
+ ](**text_config)
132
+
133
+ if audio_model_id is not None:
134
+ self.audio_config: transformers.PretrainedConfig = (
135
+ transformers.AutoConfig.from_pretrained(audio_model_id)
136
+ )
137
+ else:
138
+ audio_config = audio_config or {}
139
+ self.audio_config = transformers.CONFIG_MAPPING[
140
+ audio_config.get("model_type", "wav2vec2")
141
+ ](**audio_config)
142
+
143
+ self.text_model_lora_config = (
144
+ text_model_lora_config
145
+ if isinstance(text_model_lora_config, dict)
146
+ else dataclasses.asdict(text_model_lora_config or LoraConfigSimplified())
147
+ )
148
+ self.audio_model_lora_config = (
149
+ audio_model_lora_config
150
+ if isinstance(audio_model_lora_config, dict)
151
+ else dataclasses.asdict(audio_model_lora_config or LoraConfigSimplified())
152
+ )
153
+ self.audio_latency_block_size = audio_latency_block_size
154
+
155
+ self.vocab_size = self.text_config.vocab_size
156
+
157
+ self.initializer_range = self.text_config.initializer_range
158
+
159
+ super().__init__(**kwargs)
160
+
161
+ def to_diff_dict(self) -> Dict[str, Any]:
162
+ diff_dict = super().to_diff_dict()
163
+
164
+ # remove text_config and audio_config if text_model_id and audio_model_id are present
165
+ if self.text_model_id is not None:
166
+ diff_dict.pop("text_config", None)
167
+ if self.audio_model_id is not None:
168
+ diff_dict.pop("audio_config", None)
169
+
170
+ return diff_dict
ultravox_model.py ADDED
@@ -0,0 +1,723 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from typing import Any, Dict, Optional, Set, Tuple, Union
3
+
4
+ import peft
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as F
8
+ import transformers
9
+ import transformers.activations
10
+ import transformers.modeling_outputs
11
+ import transformers.models
12
+ from transformers.models.whisper import modeling_whisper as whisper
13
+
14
+ # We must use relative import in this directory to allow uploading to HF Hub
15
+ # Even "from . import X" pattern doesn't work (undocumented and unclear why)
16
+ from .ultravox_config import LossConfig
17
+ from .ultravox_config import LossFunction
18
+ from .ultravox_config import UltravoxConfig
19
+
20
+
21
+ class UltravoxModel(transformers.LlamaPreTrainedModel):
22
+ """
23
+ The Ultravox model which consists of an audio encoder and a language model.
24
+
25
+ Audio input is processed by the audio encoder, then every `stack_factor` frames are stacked together and
26
+ projected to the language model's embedding space using a few linear layers.
27
+ The text is embedded by the language model as usual and then the audio and text embeddings are merged together.
28
+
29
+ A special token `<|audio|>` is used to indicate the start of the audio embeddings in the merged embeddings.
30
+
31
+ Parameters:
32
+ config: Model configuration class with all the parameters of the model.
33
+ """
34
+
35
+ config_class = UltravoxConfig
36
+ config: UltravoxConfig # for type hinting
37
+ # Usually we load encoder and LLM weights from a pretrained model separately, so they are allowed to be missing
38
+ _keys_to_ignore_on_load_missing = ["audio_tower.*", "language_model.*"]
39
+
40
+ def __init__(self, config: UltravoxConfig):
41
+ super().__init__(config)
42
+ self._register_load_state_dict_pre_hook(self._pre_load_state_dict_hook)
43
+
44
+ self.keep_params: Set[str] = set()
45
+ self.vocab_size = config.vocab_size
46
+
47
+ self.audio_tower = self._create_audio_tower(config)
48
+ self.multi_modal_projector = self._create_multi_modal_projector(config)
49
+ self.language_model = self._create_language_model(config)
50
+
51
+ # Determine no_split_modules dynamically to use with FSDP auto_wrap policy.
52
+ # FSDP throws an error if some of the layer types are not found in the model.
53
+ # This would be something like ["LlamaDecoderLayer", "WhisperEncoderLayer"]
54
+ self._no_split_modules = (self.language_model._no_split_modules or []) + (
55
+ self.audio_tower._no_split_modules or []
56
+ )
57
+
58
+ self.loss_config = LossConfig()
59
+ self.post_init()
60
+
61
+ def get_input_embeddings(self):
62
+ return self.language_model.get_input_embeddings()
63
+
64
+ def set_input_embeddings(self, value):
65
+ self.language_model.set_input_embeddings(value)
66
+
67
+ def get_output_embeddings(self):
68
+ return self.language_model.get_output_embeddings()
69
+
70
+ def set_output_embeddings(self, new_embeddings):
71
+ self.language_model.set_output_embeddings(new_embeddings)
72
+
73
+ def set_decoder(self, decoder):
74
+ self.language_model.set_decoder(decoder)
75
+
76
+ def get_decoder(self):
77
+ return self.language_model.get_decoder()
78
+
79
+ def tie_weights(self):
80
+ return self.language_model.tie_weights()
81
+
82
+ def set_loss_config(self, loss_config: LossConfig):
83
+ self.loss_config = loss_config
84
+
85
+ def _setup_cache(
86
+ self, cache_cls, max_batch_size: int, max_cache_len: Optional[int] = None
87
+ ):
88
+ self.language_model._setup_cache(cache_cls, max_batch_size, max_cache_len)
89
+
90
+ def _reorder_cache(self, past_key_values, beam_idx):
91
+ return self.language_model._reorder_cache(past_key_values, beam_idx)
92
+
93
+ def resize_token_embeddings(
94
+ self,
95
+ new_num_tokens: Optional[int] = None,
96
+ pad_to_multiple_of: Optional[int] = None,
97
+ ) -> nn.Embedding:
98
+ model_embeds = self.language_model.resize_token_embeddings(
99
+ new_num_tokens, pad_to_multiple_of
100
+ )
101
+ # update vocab size
102
+ self.config.text_config.vocab_size = model_embeds.num_embeddings
103
+ self.config.vocab_size = model_embeds.num_embeddings
104
+ self.vocab_size = model_embeds.num_embeddings
105
+ return model_embeds
106
+
107
+ def _compute_kl_loss(
108
+ self,
109
+ lm_output: transformers.modeling_outputs.CausalLMOutputWithPast,
110
+ labels: Optional[torch.Tensor] = None,
111
+ past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
112
+ alt_input_ids: Optional[torch.Tensor] = None,
113
+ alt_attention_mask: Optional[torch.Tensor] = None,
114
+ alt_labels: Optional[torch.Tensor] = None,
115
+ **kwargs,
116
+ ):
117
+ # disable gradient computation for the teacher model
118
+ with torch.no_grad():
119
+ # compute the teacher (text-only) model's distribution
120
+ alt_inputs_embeds = self.get_input_embeddings().forward(alt_input_ids)
121
+ alt_lm_output = self.language_model.forward(
122
+ inputs_embeds=alt_inputs_embeds,
123
+ labels=alt_labels,
124
+ attention_mask=alt_attention_mask,
125
+ past_key_values=past_key_values,
126
+ **kwargs,
127
+ )
128
+ # compute the KL divergence loss between the two models
129
+ kl_loss = F.kl_div(
130
+ F.log_softmax(
131
+ lm_output.logits[labels != -100] / self.loss_config.kl_temperature,
132
+ dim=-1,
133
+ ),
134
+ F.softmax(
135
+ alt_lm_output.logits[alt_labels != -100]
136
+ / self.loss_config.kl_temperature,
137
+ dim=-1,
138
+ ),
139
+ reduction="batchmean",
140
+ )
141
+ return {"loss": kl_loss}
142
+
143
+ def forward(
144
+ self,
145
+ input_ids: torch.Tensor,
146
+ audio_values: Optional[torch.FloatTensor] = None,
147
+ inputs_embeds: Optional[torch.FloatTensor] = None,
148
+ labels: Optional[torch.Tensor] = None,
149
+ attention_mask: Optional[torch.Tensor] = None,
150
+ audio_token_start_idx: Optional[torch.Tensor] = None,
151
+ audio_len: Optional[torch.Tensor] = None,
152
+ audio_token_len: Optional[torch.Tensor] = None,
153
+ past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
154
+ # the alt_* fields are needed for KL divergence loss
155
+ alt_input_ids: Optional[torch.Tensor] = None,
156
+ alt_attention_mask: Optional[torch.Tensor] = None,
157
+ alt_labels: Optional[torch.Tensor] = None,
158
+ **kwargs,
159
+ ) -> Union[Tuple, transformers.modeling_outputs.CausalLMOutputWithPast]:
160
+ """
161
+ Forward pass for the Ultravox model.
162
+
163
+ `input_ids` are the tokenized text input. They are embedded by the language model as usual.
164
+ `audio_values` are processed by the audio encoder and then every `stack_factor` frames are stacked together and
165
+ projected to the language model's embedding space using a few linear layers.
166
+ The audio and text embeddings are merged together. A special token `<|audio|>` is used to indicate the start
167
+ of the audio embeddings in the merged embeddings.
168
+
169
+ Args:
170
+ input_ids: The tokenized text input.
171
+ audio_values: The processed audio values.
172
+ inputs_embeds: The embeddings for the input tokens.
173
+ labels: The tokenized text labels.
174
+ attention_mask: The attention mask for the input.
175
+ position_ids: The position ids for the input.
176
+ past_key_values: The past key value cache for the language model attention layers.
177
+ **kwargs: Additional keyword arguments. Passed directly to the language model.
178
+ """
179
+ if inputs_embeds is None:
180
+ # B x T -> B x T x D
181
+ inputs_embeds = self.get_input_embeddings().forward(input_ids)
182
+
183
+ if audio_values is not None:
184
+ assert (
185
+ audio_token_start_idx is not None and audio_token_len is not None
186
+ ), "audio_token_start_idx and audio_token_len must be provided if audio_values are provided."
187
+ assert (
188
+ len(audio_token_start_idx) == len(audio_token_len) == len(audio_values)
189
+ ), "audio_token_start_idx, audio_token_len, and audio_values must have the same batch size."
190
+
191
+ # B x A/3200 x D
192
+ audio_tower_output = self.audio_tower.forward(
193
+ audio_values.to(self.audio_tower.dtype),
194
+ audio_len=audio_len,
195
+ ).last_hidden_state
196
+ audio_tower_output = audio_tower_output.to(inputs_embeds.dtype)
197
+
198
+ audio_embeds = self.multi_modal_projector.forward(audio_tower_output)
199
+
200
+ # combine audio and text embeddings
201
+ for i, (audio, start, length) in enumerate(
202
+ zip(audio_embeds, audio_token_start_idx, audio_token_len)
203
+ ):
204
+ length = min(length, audio.shape[0])
205
+ inputs_embeds[i, start : start + length] = audio[:length]
206
+
207
+ lm_output = self.language_model.forward(
208
+ inputs_embeds=inputs_embeds,
209
+ labels=labels,
210
+ attention_mask=attention_mask,
211
+ past_key_values=past_key_values,
212
+ **kwargs,
213
+ )
214
+ if self.training:
215
+ if self.loss_config.loss_function == LossFunction.CrossEntropy:
216
+ return lm_output
217
+ elif self.loss_config.loss_function == LossFunction.KL_Divergence:
218
+ return self._compute_kl_loss(
219
+ lm_output=lm_output,
220
+ labels=labels,
221
+ past_key_values=past_key_values,
222
+ alt_input_ids=alt_input_ids,
223
+ alt_attention_mask=alt_attention_mask,
224
+ alt_labels=alt_labels,
225
+ **kwargs,
226
+ )
227
+ else:
228
+ raise ValueError(
229
+ f"Unsupported loss function: {self.loss_config.loss_function}"
230
+ )
231
+ else:
232
+ return lm_output
233
+
234
+ def prepare_inputs_for_generation(
235
+ self,
236
+ input_ids: torch.Tensor,
237
+ audio_values: Optional[torch.FloatTensor] = None,
238
+ audio_token_start_idx: Optional[torch.Tensor] = None,
239
+ audio_token_len: Optional[torch.Tensor] = None,
240
+ audio_len: Optional[torch.Tensor] = None,
241
+ past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
242
+ attention_mask: Optional[torch.Tensor] = None,
243
+ inputs_embeds: Optional[torch.Tensor] = None,
244
+ cache_position: Optional[torch.Tensor] = None,
245
+ **kwargs,
246
+ ) -> Dict[str, Any]:
247
+ model_input = self.language_model.prepare_inputs_for_generation(
248
+ input_ids=input_ids,
249
+ past_key_values=past_key_values,
250
+ attention_mask=attention_mask,
251
+ inputs_embeds=inputs_embeds,
252
+ cache_position=cache_position,
253
+ **kwargs,
254
+ )
255
+
256
+ # include audio information in model_input only when it is needed during prefilling
257
+ # audio_token_start_idx should always be relative to the current cache position
258
+ prefill_start_idx = 0 if cache_position is None else cache_position[0]
259
+ if (
260
+ audio_values is not None
261
+ and audio_token_start_idx is not None
262
+ and prefill_start_idx <= torch.max(audio_token_start_idx)
263
+ ):
264
+ model_input["audio_values"] = audio_values
265
+ model_input["audio_token_start_idx"] = (
266
+ audio_token_start_idx - prefill_start_idx
267
+ )
268
+ model_input["audio_token_len"] = audio_token_len
269
+ model_input["audio_len"] = audio_len
270
+
271
+ return model_input
272
+
273
+ @classmethod
274
+ def _create_multi_modal_projector(
275
+ cls, config: UltravoxConfig
276
+ ) -> "UltravoxProjector":
277
+ projector = UltravoxProjector(config)
278
+ projector.to(config.torch_dtype)
279
+ return projector
280
+
281
+ @classmethod
282
+ def _create_audio_tower(
283
+ cls, config: UltravoxConfig
284
+ ) -> Union[transformers.Wav2Vec2Model, "ModifiedWhisperEncoder"]:
285
+ if config.audio_model_id is not None:
286
+ if "whisper" in config.audio_model_id is not None:
287
+ audio_tower = ModifiedWhisperEncoder.from_pretrained(
288
+ config.audio_model_id, torch_dtype=config.torch_dtype
289
+ )
290
+ audio_tower.init_latency_mask(
291
+ config.audio_latency_block_size, dtype=config.torch_dtype
292
+ )
293
+ else:
294
+ assert config.audio_latency_block_size in (
295
+ None,
296
+ 0,
297
+ ), "only whisper audio tower supports audio latency masking, got non-zero value for 'audio_latency_block_size'"
298
+ audio_tower = transformers.AutoModel.from_pretrained(
299
+ config.audio_model_id, torch_dtype=config.torch_dtype
300
+ )
301
+ else:
302
+ if "whisper" in config.audio_config._name_or_path:
303
+ audio_tower = ModifiedWhisperEncoder(config.audio_config)
304
+ audio_tower.init_latency_mask(
305
+ config.audio_latency_block_size, dtype=config.torch_dtype
306
+ )
307
+ else:
308
+ assert config.audio_latency_block_size in (
309
+ None,
310
+ 0,
311
+ ), "only whisper audio tower supports audio latency masking, got non-zero value for 'audio_latency_block_size'"
312
+ with transformers.modeling_utils.no_init_weights():
313
+ # we only ever use from_config if the weights are retrained, hence initializing is not
314
+ # required. This makes the model quite creation faster since init on CPU is quite slow.
315
+ audio_tower = transformers.AutoModel.from_config(
316
+ config.audio_config
317
+ )
318
+
319
+ if isinstance(
320
+ audio_tower,
321
+ (transformers.Wav2Vec2BertModel, transformers.WhisperModel),
322
+ ):
323
+ # For these models we only need the encoder part
324
+ # Wav2Vec2BertModel -> Wav2Vec2BertEncoder
325
+ # WhisperModel -> WhisperEncoder
326
+ audio_tower = audio_tower.encoder
327
+
328
+ audio_tower = apply_lora(audio_tower, config.audio_model_lora_config)
329
+ return audio_tower
330
+
331
+ @classmethod
332
+ def _create_language_model(
333
+ cls, config: UltravoxConfig
334
+ ) -> transformers.LlamaForCausalLM:
335
+ if config.text_model_id is not None:
336
+ language_model = transformers.AutoModelForCausalLM.from_pretrained(
337
+ config.text_model_id,
338
+ attn_implementation=config._attn_implementation,
339
+ torch_dtype=config.torch_dtype,
340
+ )
341
+ else:
342
+ with transformers.modeling_utils.no_init_weights():
343
+ # we only ever use from_config if the weights are retrained, hence initializing is not
344
+ # required. This makes the model quite creation faster since init on CPU is quite slow.
345
+ language_model = transformers.AutoModelForCausalLM.from_config(
346
+ config.text_config,
347
+ attn_implementation=config._attn_implementation,
348
+ torch_dtype=config.torch_dtype,
349
+ )
350
+
351
+ language_model = apply_lora(language_model, config.text_model_lora_config)
352
+ return language_model
353
+
354
+ def merge_and_unload(self):
355
+ if isinstance(self.language_model, peft.PeftModel):
356
+ self.language_model = self.language_model.merge_and_unload()
357
+ # no need to download base language model weights anymore, so we can remove the id
358
+ self.config.text_model_id = None
359
+ self.keep_params.update(
360
+ set(
361
+ [
362
+ f"language_model.{name}"
363
+ for name, _ in self.language_model.named_parameters()
364
+ ]
365
+ )
366
+ )
367
+
368
+ if isinstance(self.audio_tower, peft.PeftModel):
369
+ self.audio_tower = self.audio_tower.merge_and_unload()
370
+ # no need to download base audio model weights anymore, so we can remove the id
371
+ self.config.audio_model_id = None
372
+ self.keep_params.update(
373
+ set(
374
+ [
375
+ f"audio_tower.{name}"
376
+ for name, _ in self.audio_tower.named_parameters()
377
+ ]
378
+ )
379
+ )
380
+
381
+ for param in ["text_model_lora_config", "audio_model_lora_config"]:
382
+ if hasattr(self.config, param):
383
+ delattr(self.config, param)
384
+
385
+ def push_to_hub(self, *args, **kwargs):
386
+ self.merge_and_unload()
387
+ self.to(self.language_model.dtype)
388
+ return super().push_to_hub(*args, **kwargs)
389
+
390
+ def save_pretrained(
391
+ self, *args, state_dict: Optional[Dict[str, Any]] = None, **kwargs
392
+ ):
393
+ if state_dict is None:
394
+ state_dict = super().state_dict()
395
+
396
+ named_params = dict(self.named_parameters())
397
+
398
+ state_dict = {
399
+ k: v
400
+ for k, v in state_dict.items()
401
+ if k in self.keep_params
402
+ or (k in named_params and named_params[k].requires_grad)
403
+ }
404
+
405
+ super().save_pretrained(*args, state_dict=state_dict, **kwargs)
406
+
407
+ def _pre_load_state_dict_hook(self, state_dict: Dict[str, Any], *args, **kwargs):
408
+ self.keep_params.update(set(state_dict.keys()))
409
+
410
+ def print_trainable_parameters(self):
411
+ """
412
+ Prints the number of trainable parameters in the model (reuses Peft model's method)
413
+ """
414
+ count_params = peft.peft_model.PeftModel.get_nb_trainable_parameters
415
+
416
+ trainable_params, all_param = count_params(self)
417
+
418
+ logging.info(
419
+ f"trainable params: {trainable_params:,d} || all params: {all_param:,d}"
420
+ f" || trainable%: {100 * trainable_params / all_param:.1f}%"
421
+ )
422
+
423
+ lm_trainable_params, lm_all_params = count_params(self.language_model)
424
+ audio_trainable_params, audio_all_params = count_params(self.audio_tower)
425
+
426
+ projector_trainable_params = (
427
+ trainable_params - lm_trainable_params - audio_trainable_params
428
+ )
429
+ projector_all_params = all_param - lm_all_params - audio_all_params
430
+
431
+ logging.info(
432
+ f"Trainable%: "
433
+ f" LLM: {100 * lm_trainable_params / lm_all_params:.1f}%"
434
+ f" || Audio Encoder: {100 * audio_trainable_params / audio_all_params:.1f}%"
435
+ f" || Projector: {100 * projector_trainable_params / projector_all_params:.1f}%"
436
+ )
437
+
438
+
439
+ def is_cache_empty(
440
+ past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]]
441
+ ) -> bool:
442
+ """
443
+ Check if the cache is empty.
444
+ """
445
+ if past_key_values is None:
446
+ return True
447
+ if isinstance(past_key_values, tuple):
448
+ return all(len(c) == 0 for c in past_key_values)
449
+ return past_key_values.get_seq_length() == 0
450
+
451
+
452
+ def apply_lora(model: torch.nn.Module, lora_config: dict) -> torch.nn.Module:
453
+ """
454
+ Applies LoRA finetuning to the model. If the `r` parameter is set to 0, the model is frozen instead.
455
+ """
456
+ lora_config = peft.LoraConfig(**lora_config or {})
457
+
458
+ if lora_config.r == 0:
459
+ # freeze the model entirely
460
+ for param in model.parameters():
461
+ param.requires_grad = False
462
+ else:
463
+ model = peft.get_peft_model(model, lora_config)
464
+
465
+ return model
466
+
467
+
468
+ class StackAudioFrames(nn.Module):
469
+ """
470
+ Stack the audio embedding frames to reduce the sequence length by a factor of `stack_factor`.
471
+
472
+ The number of output frames will be `ceil(T / stack_factor) + 1` where `T` is the number of input frames.
473
+ NOTE: the extra +1 is intentional: in case the number of audio tokens are over-estimated by the processor,
474
+ we want to make sure `processor.audio_token_replacement` (i.e. EOS) doesn't get leaked into the middle of embeddings.
475
+ In most cases this extra padding will get removed in the model's forward function so it has no effect.
476
+ """
477
+
478
+ def __init__(self, stack_factor: int = 8):
479
+ super().__init__()
480
+ self.stack_factor = stack_factor
481
+
482
+ def forward(self, audio_embeds: torch.Tensor) -> torch.Tensor:
483
+ B, T, C = audio_embeds.shape
484
+ T_pad = (T + self.stack_factor - 1) // self.stack_factor * self.stack_factor
485
+ audio_embeds = F.pad(audio_embeds, (0, 0, 0, T_pad - T + self.stack_factor))
486
+ B, T, C = audio_embeds.shape
487
+ audio_embeds = audio_embeds.view(
488
+ B, T // self.stack_factor, C * self.stack_factor
489
+ )
490
+ return audio_embeds
491
+
492
+
493
+ class RMSNorm(transformers.models.llama.modeling_llama.LlamaRMSNorm):
494
+ def __init__(self, hidden_size: int, init: float = 1, eps: float = 1e-6):
495
+ super().__init__(hidden_size=hidden_size, eps=eps)
496
+ self.weight.data.fill_(init)
497
+
498
+
499
+ class SwiGLU(nn.Module):
500
+ def forward(self, x):
501
+ x, gate = x.chunk(2, dim=-1)
502
+ return F.silu(gate) * x
503
+
504
+
505
+ class UltravoxProjector(nn.Sequential):
506
+ def __init__(self, config: UltravoxConfig):
507
+ super().__init__()
508
+ self.hidden_dim = config.hidden_size
509
+ self._pad_and_stack = StackAudioFrames(config.stack_factor)
510
+ dim = config.audio_config.hidden_size * config.stack_factor
511
+ self.ln_pre = RMSNorm(dim, init=config.norm_init)
512
+ self.linear_1 = nn.Linear(dim, self.hidden_dim, bias=False)
513
+ dim = self.hidden_dim
514
+ self.act = transformers.activations.get_activation(config.projector_act)
515
+ dim = dim // 2 if config.projector_act == "swiglu" else dim
516
+ self.linear_2 = nn.Linear(dim, config.text_config.hidden_size, bias=False)
517
+ self.ln_post = RMSNorm(config.text_config.hidden_size, init=config.norm_init)
518
+
519
+ def forward(self, audio_features: torch.Tensor) -> torch.Tensor:
520
+ audio_features = self._pad_and_stack(audio_features)
521
+ audio_features = self.ln_pre(audio_features)
522
+ hidden_states = self.linear_1(audio_features)
523
+ hidden_states = self.act(hidden_states)
524
+ hidden_states = self.linear_2(hidden_states)
525
+ hidden_states = self.ln_post(hidden_states)
526
+ return hidden_states
527
+
528
+
529
+ class ModifiedWhisperEncoder(
530
+ whisper.WhisperEncoder, transformers.modeling_utils.ModuleUtilsMixin
531
+ ):
532
+ """
533
+ Encoder portion of OpenAI's Whisper model.
534
+
535
+ This implementation is a slightly modified version of HF Transformers' Whisper Encoder, with only a few fixes:
536
+ 1. base_model_prefix updated to allow for doing `.from_pretrained` directly on the encoder
537
+ 2. allow less than 30 second of audio padding to be passed in:
538
+ - relaxed ValueError check for `input_features` length to be less than or equal to `expected_seq_length` instead of strictly equal
539
+ - embed_pos is now sliced to match the length of `inputs_embeds`
540
+
541
+ Original: https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
542
+ """
543
+
544
+ base_model_prefix = "model.encoder"
545
+ _no_split_modules = ["WhisperEncoderLayer"]
546
+
547
+ def init_latency_mask(self, audio_latency_block_size: int, dtype: torch.dtype):
548
+ if audio_latency_block_size is None:
549
+ self.audio_streaming_mask = None
550
+ return
551
+
552
+ # maximum sequence length
553
+ max_seqlen = (
554
+ self.config.max_source_positions
555
+ * self.conv1.stride[0]
556
+ * self.conv2.stride[0]
557
+ )
558
+ assert (
559
+ max_seqlen > 0
560
+ ), f"maximum sequence length must be positive, got {max_seqlen}"
561
+ assert (
562
+ max_seqlen % audio_latency_block_size == 0
563
+ ), f"audio_latency_block_size {audio_latency_block_size} must divide {max_seqlen} evenly."
564
+ # Given the block size, we calculate number of blocks.
565
+ audio_latency_nblocks = max_seqlen // audio_latency_block_size
566
+ audio_streaming_mask = (
567
+ torch.tril(
568
+ torch.ones(audio_latency_nblocks, audio_latency_nblocks),
569
+ diagonal=0,
570
+ )
571
+ .repeat_interleave(audio_latency_block_size, dim=0)
572
+ .repeat_interleave(audio_latency_block_size, dim=1)
573
+ )
574
+ audio_streaming_mask = (1.0 - audio_streaming_mask) * torch.finfo(dtype).min
575
+ audio_streaming_mask = audio_streaming_mask[None, None, :, :]
576
+ self.register_buffer(
577
+ "audio_streaming_mask", audio_streaming_mask, persistent=False
578
+ )
579
+
580
+ def forward(
581
+ self,
582
+ input_features,
583
+ audio_len=None,
584
+ head_mask=None,
585
+ output_attentions=None,
586
+ output_hidden_states=None,
587
+ return_dict=None,
588
+ ):
589
+ expected_seq_length = (
590
+ self.config.max_source_positions
591
+ * self.conv1.stride[0]
592
+ * self.conv2.stride[0]
593
+ )
594
+ if input_features.shape[-1] > expected_seq_length:
595
+ raise ValueError(
596
+ f"Whisper expects the mel input features to be of length {expected_seq_length} or less, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}."
597
+ )
598
+
599
+ output_attentions = (
600
+ output_attentions
601
+ if output_attentions is not None
602
+ else self.config.output_attentions
603
+ )
604
+ output_hidden_states = (
605
+ output_hidden_states
606
+ if output_hidden_states is not None
607
+ else self.config.output_hidden_states
608
+ )
609
+ return_dict = (
610
+ return_dict if return_dict is not None else self.config.use_return_dict
611
+ )
612
+ inputs_embeds = nn.functional.gelu(self.conv1(input_features))
613
+ inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
614
+
615
+ inputs_embeds = inputs_embeds.permute(0, 2, 1)
616
+ embed_pos = self.embed_positions.weight[: inputs_embeds.size(-2)]
617
+
618
+ hidden_states = inputs_embeds + embed_pos
619
+ hidden_states = nn.functional.dropout(
620
+ hidden_states, p=self.dropout, training=self.training
621
+ )
622
+
623
+ encoder_states = () if output_hidden_states else None
624
+ all_attentions = () if output_attentions else None
625
+
626
+ # Create attention mask based on audio lengths to mask out padding tokens
627
+ # For each sample in batch:
628
+ # - Convert raw audio length to feature length after convolutions
629
+ # - Create boolean mask that is True for valid positions and False for padding
630
+ # - Convert to extended attention mask format expected by transformer layers
631
+ # (1.0 for positions to attend to, large negative for positions to ignore)
632
+ # This masking ensures consistent behavior between training and inference
633
+ # by preventing the model from attending to padding tokens in both cases
634
+ attention_mask = None
635
+ if audio_len != None:
636
+ audio_feature_len = self._get_feat_extract_output_lengths(audio_len)
637
+ max_seq_len = hidden_states.shape[1]
638
+ attention_mask = torch.arange(max_seq_len, device=hidden_states.device)[
639
+ None, :
640
+ ].lt(audio_feature_len.view(-1, 1))
641
+ attention_mask = self.get_extended_attention_mask(
642
+ attention_mask,
643
+ None,
644
+ device=hidden_states.device,
645
+ dtype=hidden_states.dtype,
646
+ )
647
+
648
+ if self.audio_streaming_mask is not None:
649
+ seqlen = hidden_states.size(-2)
650
+ if attention_mask is not None:
651
+ attention_mask = torch.minimum(
652
+ self.audio_streaming_mask[:, :, :seqlen, :seqlen], attention_mask
653
+ ) # merge
654
+ else:
655
+ attention_mask = self.audio_streaming_mask[:, :, :seqlen, :seqlen]
656
+ attention_mask = attention_mask.to(hidden_states.dtype)
657
+
658
+ # check if head_mask has a correct number of layers specified if desired
659
+ if head_mask is not None:
660
+ assert head_mask.size()[0] == (
661
+ len(self.layers)
662
+ ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
663
+
664
+ for idx, encoder_layer in enumerate(self.layers):
665
+ if output_hidden_states:
666
+ encoder_states = encoder_states + (hidden_states,)
667
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
668
+ to_drop = False
669
+ if self.training:
670
+ dropout_probability = torch.rand([])
671
+ if dropout_probability < self.layerdrop: # skip the layer
672
+ to_drop = True
673
+
674
+ if to_drop:
675
+ layer_outputs = (None, None)
676
+ else:
677
+ if self.gradient_checkpointing and self.training:
678
+ layer_outputs = self._gradient_checkpointing_func(
679
+ encoder_layer.__call__,
680
+ hidden_states,
681
+ attention_mask,
682
+ (head_mask[idx] if head_mask is not None else None),
683
+ output_attentions,
684
+ )
685
+ else:
686
+ layer_outputs = encoder_layer(
687
+ hidden_states,
688
+ attention_mask,
689
+ layer_head_mask=(
690
+ head_mask[idx] if head_mask is not None else None
691
+ ),
692
+ output_attentions=output_attentions,
693
+ )
694
+
695
+ hidden_states = layer_outputs[0]
696
+
697
+ if output_attentions:
698
+ all_attentions = all_attentions + (layer_outputs[1],)
699
+
700
+ hidden_states = self.layer_norm(hidden_states)
701
+ if output_hidden_states:
702
+ encoder_states = encoder_states + (hidden_states,)
703
+
704
+ if not return_dict:
705
+ return tuple(
706
+ v
707
+ for v in [hidden_states, encoder_states, all_attentions]
708
+ if v is not None
709
+ )
710
+ return transformers.modeling_outputs.BaseModelOutput(
711
+ last_hidden_state=hidden_states,
712
+ hidden_states=encoder_states,
713
+ attentions=all_attentions,
714
+ )
715
+
716
+
717
+ UltravoxConfig.register_for_auto_class()
718
+ UltravoxModel.register_for_auto_class()
719
+
720
+ transformers.AutoConfig.register("ultravox", UltravoxConfig)
721
+ transformers.AutoModel.register(UltravoxConfig, UltravoxModel)
722
+
723
+ transformers.activations.ACT2FN["swiglu"] = SwiGLU
vocab.json ADDED
The diff for this file is too large to render. See raw diff