--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: '"I think this might be the solution."' - text: '"Oh no, I apologize!"' - text: Could you repeat that, please? - text: Oh, this is so disappointing. - text: Uhh, clear. metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true datasets: - rbojja/zero-shot-intent-classification base_model: BAAI/bge-small-en-v1.5 --- # SetFit with BAAI/bge-small-en-v1.5 This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [rbojja/zero-shot-intent-classification](https://huggingface.co/datasets/rbojja/zero-shot-intent-classification) dataset that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 18 classes - **Training Dataset:** [rbojja/zero-shot-intent-classification](https://huggingface.co/datasets/rbojja/zero-shot-intent-classification) ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------| | 7 | | | 3 | | | 15 | | | 8 | | | 12 | | | 9 | | | 17 | | | 0 | | | 6 | | | 11 | | | 16 | | | 4 | | | 10 | | | 13 | | | 2 | | | 1 | | | 5 | | | 14 | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("rbojja/intent-classification-small") # Run inference preds = model("Uhh, clear.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 2 | 4.2224 | 9 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 40 | | 1 | 40 | | 2 | 37 | | 3 | 40 | | 4 | 41 | | 5 | 38 | | 6 | 42 | | 7 | 38 | | 8 | 35 | | 9 | 39 | | 10 | 42 | | 11 | 41 | | 12 | 42 | | 13 | 44 | | 14 | 38 | | 15 | 43 | | 16 | 47 | | 17 | 37 | ### Training Hyperparameters - batch_size: (16, 2) - num_epochs: (1, 16) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0006 | 1 | 0.149 | - | | 0.0276 | 50 | 0.1836 | - | | 0.0552 | 100 | 0.1408 | - | | 0.0829 | 150 | 0.0978 | - | | 0.1105 | 200 | 0.0805 | - | | 0.1381 | 250 | 0.0684 | - | | 0.1657 | 300 | 0.0594 | - | | 0.1934 | 350 | 0.051 | - | | 0.2210 | 400 | 0.0383 | - | | 0.2486 | 450 | 0.0379 | - | | 0.2762 | 500 | 0.035 | - | | 0.3039 | 550 | 0.0334 | - | | 0.3315 | 600 | 0.0306 | - | | 0.3591 | 650 | 0.0266 | - | | 0.3867 | 700 | 0.0264 | - | | 0.4144 | 750 | 0.018 | - | | 0.4420 | 800 | 0.0193 | - | | 0.4696 | 850 | 0.0166 | - | | 0.4972 | 900 | 0.0165 | - | | 0.5249 | 950 | 0.016 | - | | 0.5525 | 1000 | 0.0177 | - | | 0.5801 | 1050 | 0.0202 | - | | 0.6077 | 1100 | 0.0133 | - | | 0.6354 | 1150 | 0.014 | - | | 0.6630 | 1200 | 0.013 | - | | 0.6906 | 1250 | 0.0161 | - | | 0.7182 | 1300 | 0.0119 | - | | 0.7459 | 1350 | 0.0132 | - | | 0.7735 | 1400 | 0.0131 | - | | 0.8011 | 1450 | 0.0123 | - | | 0.8287 | 1500 | 0.0115 | - | | 0.8564 | 1550 | 0.0111 | - | | 0.8840 | 1600 | 0.011 | - | | 0.9116 | 1650 | 0.01 | - | | 0.9392 | 1700 | 0.0098 | - | | 0.9669 | 1750 | 0.0142 | - | | 0.9945 | 1800 | 0.0132 | - | ### Framework Versions - Python: 3.11.11 - SetFit: 1.1.1 - Sentence Transformers: 3.3.1 - Transformers: 4.47.1 - PyTorch: 2.5.1+cu121 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```