--- license: mit library_name: peft tags: - generated_from_trainer metrics: - accuracy base_model: microsoft/deberta-v3-xsmall model-index: - name: STS-Lora-Fine-Tuning-Capstone-Deberta-old-model-pipe-test_augmentation results: [] --- # STS-Lora-Fine-Tuning-Capstone-Deberta-old-model-pipe-test_augmentation This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2431 - Accuracy: 0.4627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 360 | 1.7500 | 0.2429 | | 1.7474 | 2.0 | 720 | 1.7255 | 0.2451 | | 1.681 | 3.0 | 1080 | 1.6291 | 0.3332 | | 1.681 | 4.0 | 1440 | 1.4764 | 0.4130 | | 1.5419 | 5.0 | 1800 | 1.4165 | 0.4159 | | 1.4014 | 6.0 | 2160 | 1.3548 | 0.4336 | | 1.3269 | 7.0 | 2520 | 1.3122 | 0.4456 | | 1.3269 | 8.0 | 2880 | 1.3003 | 0.4529 | | 1.2821 | 9.0 | 3240 | 1.2830 | 0.4572 | | 1.2516 | 10.0 | 3600 | 1.2757 | 0.4576 | | 1.2516 | 11.0 | 3960 | 1.2619 | 0.4590 | | 1.2304 | 12.0 | 4320 | 1.2501 | 0.4670 | | 1.2172 | 13.0 | 4680 | 1.2674 | 0.4583 | | 1.2043 | 14.0 | 5040 | 1.2459 | 0.4656 | | 1.2043 | 15.0 | 5400 | 1.2464 | 0.4627 | | 1.1956 | 16.0 | 5760 | 1.2439 | 0.4645 | | 1.1814 | 17.0 | 6120 | 1.2395 | 0.4648 | | 1.1814 | 18.0 | 6480 | 1.2429 | 0.4637 | | 1.1816 | 19.0 | 6840 | 1.2450 | 0.4634 | | 1.1794 | 20.0 | 7200 | 1.2431 | 0.4627 | ### Framework versions - PEFT 0.10.0 - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2