File size: 59,327 Bytes
d90707f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
# python3 -m espnet2.bin.asr_train --use_preprocessor true --bpemodel data/cy_token_list/bpe_unigram150/bpe.model --token_type bpe --token_list data/cy_token_list/bpe_unigram150/tokens.txt --non_linguistic_symbols none --cleaner none --g2p none --valid_data_path_and_name_and_type dump/raw/dev_cy/wav.scp,speech,sound --valid_data_path_and_name_and_type dump/raw/dev_cy/text,text,text --valid_shape_file exp/asr_stats_raw_cy_bpe150_sp/valid/speech_shape --valid_shape_file exp/asr_stats_raw_cy_bpe150_sp/valid/text_shape.bpe --resume true --init_param --ignore_init_mismatch false --fold_length 80000 --fold_length 150 --output_dir exp/asr_oxford_frontend_raw_cy_bpe150_sp --config conf/tuning/oxford_frontend.yaml --frontend_conf fs=16k --train_data_path_and_name_and_type dump/raw/train_cy_sp/wav.scp,speech,sound --train_data_path_and_name_and_type dump/raw/train_cy_sp/text,text,text --train_shape_file exp/asr_stats_raw_cy_bpe150_sp/train/speech_shape --train_shape_file exp/asr_stats_raw_cy_bpe150_sp/train/text_shape.bpe --ngpu 3 --multiprocessing_distributed True 
# Started at Mon Jun  6 13:43:54 EDT 2022
#
/usr/bin/python3 /project/ocean/junweih/espnet/espnet2/bin/asr_train.py --use_preprocessor true --bpemodel data/cy_token_list/bpe_unigram150/bpe.model --token_type bpe --token_list data/cy_token_list/bpe_unigram150/tokens.txt --non_linguistic_symbols none --cleaner none --g2p none --valid_data_path_and_name_and_type dump/raw/dev_cy/wav.scp,speech,sound --valid_data_path_and_name_and_type dump/raw/dev_cy/text,text,text --valid_shape_file exp/asr_stats_raw_cy_bpe150_sp/valid/speech_shape --valid_shape_file exp/asr_stats_raw_cy_bpe150_sp/valid/text_shape.bpe --resume true --init_param --ignore_init_mismatch false --fold_length 80000 --fold_length 150 --output_dir exp/asr_oxford_frontend_raw_cy_bpe150_sp --config conf/tuning/oxford_frontend.yaml --frontend_conf fs=16k --train_data_path_and_name_and_type dump/raw/train_cy_sp/wav.scp,speech,sound --train_data_path_and_name_and_type dump/raw/train_cy_sp/text,text,text --train_shape_file exp/asr_stats_raw_cy_bpe150_sp/train/speech_shape --train_shape_file exp/asr_stats_raw_cy_bpe150_sp/train/text_shape.bpe --ngpu 3 --multiprocessing_distributed True
[islpc50:0/3] 2022-06-06 13:44:05,310 (distributed_c10d:217) INFO: Added key: store_based_barrier_key:1 to store for rank: 0
[islpc50:0/3] 2022-06-06 13:44:05,310 (distributed_c10d:251) INFO: Rank 0: Completed store-based barrier for key:store_based_barrier_key:1 with 3 nodes.
[islpc50:0/3] 2022-06-06 13:44:05,357 (asr:411) INFO: Vocabulary size: 150
[islpc50:0/3] 2022-06-06 13:44:05,863 (filelock:274) INFO: Lock 139812231996992 acquired on ./hub/s3prl_cache/1c76d6e88090f01736036b28dc995fef583f47f42662d55286332557f957609f.lock
[islpc50:0/3] 2022-06-06 13:44:05,864 (filelock:318) INFO: Lock 139812231996992 released on ./hub/s3prl_cache/1c76d6e88090f01736036b28dc995fef583f47f42662d55286332557f957609f.lock
[Featurizer] - The selected feature last_hidden_state's downsample rate is 320
[islpc50:0/3] 2022-06-06 13:44:20,588 (s3prl:159) INFO: Pretrained S3PRL frontend model parameters reloaded!
[islpc50:0/3] 2022-06-06 13:44:24,553 (abs_task:1157) INFO: pytorch.version=1.10.1+cu111, cuda.available=True, cudnn.version=8005, cudnn.benchmark=False, cudnn.deterministic=True
[islpc50:0/3] 2022-06-06 13:44:24,558 (abs_task:1158) INFO: Model structure:
ESPnetASRModel(
  (frontend): S3prlFrontend(
    (upstream): UpstreamExpert(
      (model): Wav2Vec2Model(
        (feature_extractor): ConvFeatureExtractionModel(
          (conv_layers): ModuleList(
            (0): Sequential(
              (0): Conv1d(1, 512, kernel_size=(10,), stride=(5,))
              (1): Dropout(p=0.0, inplace=False)
              (2): Sequential(
                (0): TransposeLast()
                (1): Fp32LayerNorm((512,), eps=1e-05, elementwise_affine=True)
                (2): TransposeLast()
              )
              (3): GELU()
            )
            (1): Sequential(
              (0): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
              (1): Dropout(p=0.0, inplace=False)
              (2): Sequential(
                (0): TransposeLast()
                (1): Fp32LayerNorm((512,), eps=1e-05, elementwise_affine=True)
                (2): TransposeLast()
              )
              (3): GELU()
            )
            (2): Sequential(
              (0): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
              (1): Dropout(p=0.0, inplace=False)
              (2): Sequential(
                (0): TransposeLast()
                (1): Fp32LayerNorm((512,), eps=1e-05, elementwise_affine=True)
                (2): TransposeLast()
              )
              (3): GELU()
            )
            (3): Sequential(
              (0): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
              (1): Dropout(p=0.0, inplace=False)
              (2): Sequential(
                (0): TransposeLast()
                (1): Fp32LayerNorm((512,), eps=1e-05, elementwise_affine=True)
                (2): TransposeLast()
              )
              (3): GELU()
            )
            (4): Sequential(
              (0): Conv1d(512, 512, kernel_size=(3,), stride=(2,))
              (1): Dropout(p=0.0, inplace=False)
              (2): Sequential(
                (0): TransposeLast()
                (1): Fp32LayerNorm((512,), eps=1e-05, elementwise_affine=True)
                (2): TransposeLast()
              )
              (3): GELU()
            )
            (5): Sequential(
              (0): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
              (1): Dropout(p=0.0, inplace=False)
              (2): Sequential(
                (0): TransposeLast()
                (1): Fp32LayerNorm((512,), eps=1e-05, elementwise_affine=True)
                (2): TransposeLast()
              )
              (3): GELU()
            )
            (6): Sequential(
              (0): Conv1d(512, 512, kernel_size=(2,), stride=(2,))
              (1): Dropout(p=0.0, inplace=False)
              (2): Sequential(
                (0): TransposeLast()
                (1): Fp32LayerNorm((512,), eps=1e-05, elementwise_affine=True)
                (2): TransposeLast()
              )
              (3): GELU()
            )
          )
        )
        (post_extract_proj): Linear(in_features=512, out_features=1024, bias=True)
        (dropout_input): Dropout(p=0.1, inplace=False)
        (dropout_features): Dropout(p=0.1, inplace=False)
        (quantizer): GumbelVectorQuantizer(
          (weight_proj): Linear(in_features=512, out_features=640, bias=True)
        )
        (project_q): Linear(in_features=768, out_features=768, bias=True)
        (encoder): TransformerEncoder(
          (pos_conv): Sequential(
            (0): Conv1d(1024, 1024, kernel_size=(128,), stride=(1,), padding=(64,), groups=16)
            (1): SamePad()
            (2): GELU()
          )
          (layers): ModuleList(
            (0): AdapterTransformerSentenceEncoderLayer(
              (self_attn): MultiheadAttention(
                (dropout_module): FairseqDropout()
                (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
              )
              (dropout1): Dropout(p=0.0, inplace=False)
              (dropout2): Dropout(p=0.0, inplace=False)
              (dropout3): Dropout(p=0.0, inplace=False)
              (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (adapter1): Adapter(
                (down_projection): Linear(in_features=1024, out_features=192, bias=True)
                (up_projection): Linear(in_features=192, out_features=1024, bias=True)
              )
              (adapter2): Adapter(
                (down_projection): Linear(in_features=1024, out_features=192, bias=True)
                (up_projection): Linear(in_features=192, out_features=1024, bias=True)
              )
            )
            (1): AdapterTransformerSentenceEncoderLayer(
              (self_attn): MultiheadAttention(
                (dropout_module): FairseqDropout()
                (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
              )
              (dropout1): Dropout(p=0.0, inplace=False)
              (dropout2): Dropout(p=0.0, inplace=False)
              (dropout3): Dropout(p=0.0, inplace=False)
              (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (adapter1): Adapter(
                (down_projection): Linear(in_features=1024, out_features=192, bias=True)
                (up_projection): Linear(in_features=192, out_features=1024, bias=True)
              )
              (adapter2): Adapter(
                (down_projection): Linear(in_features=1024, out_features=192, bias=True)
                (up_projection): Linear(in_features=192, out_features=1024, bias=True)
              )
            )
            (2): AdapterTransformerSentenceEncoderLayer(
              (self_attn): MultiheadAttention(
                (dropout_module): FairseqDropout()
                (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
              )
              (dropout1): Dropout(p=0.0, inplace=False)
              (dropout2): Dropout(p=0.0, inplace=False)
              (dropout3): Dropout(p=0.0, inplace=False)
              (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (adapter1): Adapter(
                (down_projection): Linear(in_features=1024, out_features=192, bias=True)
                (up_projection): Linear(in_features=192, out_features=1024, bias=True)
              )
              (adapter2): Adapter(
                (down_projection): Linear(in_features=1024, out_features=192, bias=True)
                (up_projection): Linear(in_features=192, out_features=1024, bias=True)
              )
            )
            (3): TransformerSentenceEncoderLayer(
              (self_attn): MultiheadAttention(
                (dropout_module): FairseqDropout()
                (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
              )
              (dropout1): Dropout(p=0.0, inplace=False)
              (dropout2): Dropout(p=0.0, inplace=False)
              (dropout3): Dropout(p=0.0, inplace=False)
              (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            )
            (4): TransformerSentenceEncoderLayer(
              (self_attn): MultiheadAttention(
                (dropout_module): FairseqDropout()
                (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
              )
              (dropout1): Dropout(p=0.0, inplace=False)
              (dropout2): Dropout(p=0.0, inplace=False)
              (dropout3): Dropout(p=0.0, inplace=False)
              (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            )
            (5): TransformerSentenceEncoderLayer(
              (self_attn): MultiheadAttention(
                (dropout_module): FairseqDropout()
                (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
              )
              (dropout1): Dropout(p=0.0, inplace=False)
              (dropout2): Dropout(p=0.0, inplace=False)
              (dropout3): Dropout(p=0.0, inplace=False)
              (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            )
            (6): TransformerSentenceEncoderLayer(
              (self_attn): MultiheadAttention(
                (dropout_module): FairseqDropout()
                (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
              )
              (dropout1): Dropout(p=0.0, inplace=False)
              (dropout2): Dropout(p=0.0, inplace=False)
              (dropout3): Dropout(p=0.0, inplace=False)
              (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            )
            (7): TransformerSentenceEncoderLayer(
              (self_attn): MultiheadAttention(
                (dropout_module): FairseqDropout()
                (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
              )
              (dropout1): Dropout(p=0.0, inplace=False)
              (dropout2): Dropout(p=0.0, inplace=False)
              (dropout3): Dropout(p=0.0, inplace=False)
              (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            )
            (8): TransformerSentenceEncoderLayer(
              (self_attn): MultiheadAttention(
                (dropout_module): FairseqDropout()
                (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
              )
              (dropout1): Dropout(p=0.0, inplace=False)
              (dropout2): Dropout(p=0.0, inplace=False)
              (dropout3): Dropout(p=0.0, inplace=False)
              (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            )
            (9): TransformerSentenceEncoderLayer(
              (self_attn): MultiheadAttention(
                (dropout_module): FairseqDropout()
                (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
              )
              (dropout1): Dropout(p=0.0, inplace=False)
              (dropout2): Dropout(p=0.0, inplace=False)
              (dropout3): Dropout(p=0.0, inplace=False)
              (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            )
            (10): TransformerSentenceEncoderLayer(
              (self_attn): MultiheadAttention(
                (dropout_module): FairseqDropout()
                (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
              )
              (dropout1): Dropout(p=0.0, inplace=False)
              (dropout2): Dropout(p=0.0, inplace=False)
              (dropout3): Dropout(p=0.0, inplace=False)
              (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            )
            (11): TransformerSentenceEncoderLayer(
              (self_attn): MultiheadAttention(
                (dropout_module): FairseqDropout()
                (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
              )
              (dropout1): Dropout(p=0.0, inplace=False)
              (dropout2): Dropout(p=0.0, inplace=False)
              (dropout3): Dropout(p=0.0, inplace=False)
              (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            )
            (12): TransformerSentenceEncoderLayer(
              (self_attn): MultiheadAttention(
                (dropout_module): FairseqDropout()
                (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
              )
              (dropout1): Dropout(p=0.0, inplace=False)
              (dropout2): Dropout(p=0.0, inplace=False)
              (dropout3): Dropout(p=0.0, inplace=False)
              (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            )
            (13): TransformerSentenceEncoderLayer(
              (self_attn): MultiheadAttention(
                (dropout_module): FairseqDropout()
                (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
              )
              (dropout1): Dropout(p=0.0, inplace=False)
              (dropout2): Dropout(p=0.0, inplace=False)
              (dropout3): Dropout(p=0.0, inplace=False)
              (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            )
            (14): TransformerSentenceEncoderLayer(
              (self_attn): MultiheadAttention(
                (dropout_module): FairseqDropout()
                (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
              )
              (dropout1): Dropout(p=0.0, inplace=False)
              (dropout2): Dropout(p=0.0, inplace=False)
              (dropout3): Dropout(p=0.0, inplace=False)
              (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            )
            (15): TransformerSentenceEncoderLayer(
              (self_attn): MultiheadAttention(
                (dropout_module): FairseqDropout()
                (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
              )
              (dropout1): Dropout(p=0.0, inplace=False)
              (dropout2): Dropout(p=0.0, inplace=False)
              (dropout3): Dropout(p=0.0, inplace=False)
              (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            )
            (16): TransformerSentenceEncoderLayer(
              (self_attn): MultiheadAttention(
                (dropout_module): FairseqDropout()
                (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
              )
              (dropout1): Dropout(p=0.0, inplace=False)
              (dropout2): Dropout(p=0.0, inplace=False)
              (dropout3): Dropout(p=0.0, inplace=False)
              (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            )
            (17): TransformerSentenceEncoderLayer(
              (self_attn): MultiheadAttention(
                (dropout_module): FairseqDropout()
                (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
              )
              (dropout1): Dropout(p=0.0, inplace=False)
              (dropout2): Dropout(p=0.0, inplace=False)
              (dropout3): Dropout(p=0.0, inplace=False)
              (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            )
            (18): TransformerSentenceEncoderLayer(
              (self_attn): MultiheadAttention(
                (dropout_module): FairseqDropout()
                (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
              )
              (dropout1): Dropout(p=0.0, inplace=False)
              (dropout2): Dropout(p=0.0, inplace=False)
              (dropout3): Dropout(p=0.0, inplace=False)
              (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            )
            (19): TransformerSentenceEncoderLayer(
              (self_attn): MultiheadAttention(
                (dropout_module): FairseqDropout()
                (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
              )
              (dropout1): Dropout(p=0.0, inplace=False)
              (dropout2): Dropout(p=0.0, inplace=False)
              (dropout3): Dropout(p=0.0, inplace=False)
              (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            )
            (20): TransformerSentenceEncoderLayer(
              (self_attn): MultiheadAttention(
                (dropout_module): FairseqDropout()
                (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
              )
              (dropout1): Dropout(p=0.0, inplace=False)
              (dropout2): Dropout(p=0.0, inplace=False)
              (dropout3): Dropout(p=0.0, inplace=False)
              (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            )
            (21): TransformerSentenceEncoderLayer(
              (self_attn): MultiheadAttention(
                (dropout_module): FairseqDropout()
                (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
              )
              (dropout1): Dropout(p=0.0, inplace=False)
              (dropout2): Dropout(p=0.0, inplace=False)
              (dropout3): Dropout(p=0.0, inplace=False)
              (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            )
            (22): TransformerSentenceEncoderLayer(
              (self_attn): MultiheadAttention(
                (dropout_module): FairseqDropout()
                (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
              )
              (dropout1): Dropout(p=0.0, inplace=False)
              (dropout2): Dropout(p=0.0, inplace=False)
              (dropout3): Dropout(p=0.0, inplace=False)
              (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            )
            (23): TransformerSentenceEncoderLayer(
              (self_attn): MultiheadAttention(
                (dropout_module): FairseqDropout()
                (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
                (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
              )
              (dropout1): Dropout(p=0.0, inplace=False)
              (dropout2): Dropout(p=0.0, inplace=False)
              (dropout3): Dropout(p=0.0, inplace=False)
              (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
              (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            )
          )
          (layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
        )
        (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (final_proj): Linear(in_features=1024, out_features=768, bias=True)
      )
    )
    (featurizer): Featurizer()
  )
  (normalize): UtteranceMVN(norm_means=True, norm_vars=False)
  (encoder): TransformerEncoder(
    (embed): Conv2dSubsampling(
      (conv): Sequential(
        (0): Conv2d(1, 1024, kernel_size=(3, 3), stride=(2, 2))
        (1): ReLU()
        (2): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(2, 2))
        (3): ReLU()
      )
      (out): Sequential(
        (0): Linear(in_features=261120, out_features=1024, bias=True)
        (1): PositionalEncoding(
          (dropout): Dropout(p=0.1, inplace=False)
        )
      )
    )
    (encoders): MultiSequential(
      (0): EncoderLayer(
        (self_attn): MultiHeadedAttention(
          (linear_q): Linear(in_features=1024, out_features=1024, bias=True)
          (linear_k): Linear(in_features=1024, out_features=1024, bias=True)
          (linear_v): Linear(in_features=1024, out_features=1024, bias=True)
          (linear_out): Linear(in_features=1024, out_features=1024, bias=True)
          (dropout): Dropout(p=0.0, inplace=False)
        )
        (feed_forward): PositionwiseFeedForward(
          (w_1): Linear(in_features=1024, out_features=2048, bias=True)
          (w_2): Linear(in_features=2048, out_features=1024, bias=True)
          (dropout): Dropout(p=0.1, inplace=False)
          (activation): ReLU()
        )
        (norm1): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
        (norm2): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (1): EncoderLayer(
        (self_attn): MultiHeadedAttention(
          (linear_q): Linear(in_features=1024, out_features=1024, bias=True)
          (linear_k): Linear(in_features=1024, out_features=1024, bias=True)
          (linear_v): Linear(in_features=1024, out_features=1024, bias=True)
          (linear_out): Linear(in_features=1024, out_features=1024, bias=True)
          (dropout): Dropout(p=0.0, inplace=False)
        )
        (feed_forward): PositionwiseFeedForward(
          (w_1): Linear(in_features=1024, out_features=2048, bias=True)
          (w_2): Linear(in_features=2048, out_features=1024, bias=True)
          (dropout): Dropout(p=0.1, inplace=False)
          (activation): ReLU()
        )
        (norm1): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
        (norm2): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (2): EncoderLayer(
        (self_attn): MultiHeadedAttention(
          (linear_q): Linear(in_features=1024, out_features=1024, bias=True)
          (linear_k): Linear(in_features=1024, out_features=1024, bias=True)
          (linear_v): Linear(in_features=1024, out_features=1024, bias=True)
          (linear_out): Linear(in_features=1024, out_features=1024, bias=True)
          (dropout): Dropout(p=0.0, inplace=False)
        )
        (feed_forward): PositionwiseFeedForward(
          (w_1): Linear(in_features=1024, out_features=2048, bias=True)
          (w_2): Linear(in_features=2048, out_features=1024, bias=True)
          (dropout): Dropout(p=0.1, inplace=False)
          (activation): ReLU()
        )
        (norm1): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
        (norm2): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (3): EncoderLayer(
        (self_attn): MultiHeadedAttention(
          (linear_q): Linear(in_features=1024, out_features=1024, bias=True)
          (linear_k): Linear(in_features=1024, out_features=1024, bias=True)
          (linear_v): Linear(in_features=1024, out_features=1024, bias=True)
          (linear_out): Linear(in_features=1024, out_features=1024, bias=True)
          (dropout): Dropout(p=0.0, inplace=False)
        )
        (feed_forward): PositionwiseFeedForward(
          (w_1): Linear(in_features=1024, out_features=2048, bias=True)
          (w_2): Linear(in_features=2048, out_features=1024, bias=True)
          (dropout): Dropout(p=0.1, inplace=False)
          (activation): ReLU()
        )
        (norm1): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
        (norm2): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (4): EncoderLayer(
        (self_attn): MultiHeadedAttention(
          (linear_q): Linear(in_features=1024, out_features=1024, bias=True)
          (linear_k): Linear(in_features=1024, out_features=1024, bias=True)
          (linear_v): Linear(in_features=1024, out_features=1024, bias=True)
          (linear_out): Linear(in_features=1024, out_features=1024, bias=True)
          (dropout): Dropout(p=0.0, inplace=False)
        )
        (feed_forward): PositionwiseFeedForward(
          (w_1): Linear(in_features=1024, out_features=2048, bias=True)
          (w_2): Linear(in_features=2048, out_features=1024, bias=True)
          (dropout): Dropout(p=0.1, inplace=False)
          (activation): ReLU()
        )
        (norm1): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
        (norm2): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (5): EncoderLayer(
        (self_attn): MultiHeadedAttention(
          (linear_q): Linear(in_features=1024, out_features=1024, bias=True)
          (linear_k): Linear(in_features=1024, out_features=1024, bias=True)
          (linear_v): Linear(in_features=1024, out_features=1024, bias=True)
          (linear_out): Linear(in_features=1024, out_features=1024, bias=True)
          (dropout): Dropout(p=0.0, inplace=False)
        )
        (feed_forward): PositionwiseFeedForward(
          (w_1): Linear(in_features=1024, out_features=2048, bias=True)
          (w_2): Linear(in_features=2048, out_features=1024, bias=True)
          (dropout): Dropout(p=0.1, inplace=False)
          (activation): ReLU()
        )
        (norm1): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
        (norm2): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
    (after_norm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
  )
  (criterion_att): LabelSmoothingLoss(
    (criterion): KLDivLoss()
  )
  (ctc): CTC(
    (ctc_lo): Linear(in_features=1024, out_features=150, bias=True)
    (ctc_loss): CTCLoss()
  )
)

Model summary:
    Class Name: ESPnetASRModel
    Total Number of model parameters: 647.15 M
    Number of trainable parameters: 329.76 M (51.0%)
    Size: 1.32 GB
    Type: torch.float32
[islpc50:0/3] 2022-06-06 13:44:24,559 (abs_task:1161) INFO: Optimizer:
Adam (
Parameter Group 0
    amsgrad: False
    betas: (0.9, 0.999)
    eps: 1e-08
    initial_lr: 0.00027
    lr: 6.749999999999999e-09
    weight_decay: 0
)
[islpc50:0/3] 2022-06-06 13:44:24,559 (abs_task:1162) INFO: Scheduler: WarmupLR(warmup_steps=40000)
[islpc50:0/3] 2022-06-06 13:44:24,564 (abs_task:1171) INFO: Saving the configuration in exp/asr_oxford_frontend_raw_cy_bpe150_sp/config.yaml
[islpc50:0/3] 2022-06-06 13:44:26,790 (abs_task:1525) INFO: [train] dataset:
ESPnetDataset(
  speech: {"path": "dump/raw/train_cy_sp/wav.scp", "type": "sound"}
  text: {"path": "dump/raw/train_cy_sp/text", "type": "text"}
  preprocess: <espnet2.train.preprocessor.CommonPreprocessor object at 0x7f28098a80a0>)
[islpc50:0/3] 2022-06-06 13:44:26,790 (abs_task:1526) INFO: [train] Batch sampler: FoldedBatchSampler(N-batch=58673, batch_size=1, shape_files=['exp/asr_stats_raw_cy_bpe150_sp/train/speech_shape', 'exp/asr_stats_raw_cy_bpe150_sp/train/text_shape.bpe'], sort_in_batch=descending, sort_batch=descending)
[islpc50:0/3] 2022-06-06 13:44:26,797 (abs_task:1527) INFO: [train] mini-batch sizes summary: N-batch=58673, mean=3.0, min=3, max=3
[islpc50:0/3] 2022-06-06 13:44:26,935 (abs_task:1525) INFO: [valid] dataset:
ESPnetDataset(
  speech: {"path": "dump/raw/dev_cy/wav.scp", "type": "sound"}
  text: {"path": "dump/raw/dev_cy/text", "type": "text"}
  preprocess: <espnet2.train.preprocessor.CommonPreprocessor object at 0x7f28098a83d0>)
[islpc50:0/3] 2022-06-06 13:44:26,935 (abs_task:1526) INFO: [valid] Batch sampler: FoldedBatchSampler(N-batch=977, batch_size=1, shape_files=['exp/asr_stats_raw_cy_bpe150_sp/valid/speech_shape', 'exp/asr_stats_raw_cy_bpe150_sp/valid/text_shape.bpe'], sort_in_batch=descending, sort_batch=descending)
[islpc50:0/3] 2022-06-06 13:44:26,935 (abs_task:1527) INFO: [valid] mini-batch sizes summary: N-batch=977, mean=3.0, min=3, max=4
[islpc50:0/3] 2022-06-06 13:44:26,972 (abs_task:1525) INFO: [plot_att] dataset:
ESPnetDataset(
  speech: {"path": "dump/raw/dev_cy/wav.scp", "type": "sound"}
  text: {"path": "dump/raw/dev_cy/text", "type": "text"}
  preprocess: <espnet2.train.preprocessor.CommonPreprocessor object at 0x7f27e17ac970>)
[islpc50:0/3] 2022-06-06 13:44:26,972 (abs_task:1526) INFO: [plot_att] Batch sampler: UnsortedBatchSampler(N-batch=2933, batch_size=1, key_file=exp/asr_stats_raw_cy_bpe150_sp/valid/speech_shape, 
[islpc50:0/3] 2022-06-06 13:44:26,972 (abs_task:1527) INFO: [plot_att] mini-batch sizes summary: N-batch=3, mean=1.0, min=1, max=1
islpc50:1025746:1025746 [0] NCCL INFO Bootstrap : Using bond0:128.2.205.9<0>
islpc50:1025746:1025746 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
islpc50:1025746:1025746 [0] NCCL INFO NET/IB : No device found.
islpc50:1025746:1025746 [0] NCCL INFO NET/Socket : Using [0]bond0:128.2.205.9<0>
islpc50:1025746:1025746 [0] NCCL INFO Using network Socket
NCCL version 2.10.3+cuda11.1
islpc50:1025747:1025747 [1] NCCL INFO Bootstrap : Using bond0:128.2.205.9<0>
islpc50:1025748:1025748 [2] NCCL INFO Bootstrap : Using bond0:128.2.205.9<0>
islpc50:1025747:1025747 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
islpc50:1025748:1025748 [2] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation
islpc50:1025747:1025747 [1] NCCL INFO NET/IB : No device found.
islpc50:1025748:1025748 [2] NCCL INFO NET/IB : No device found.
islpc50:1025747:1025747 [1] NCCL INFO NET/Socket : Using [0]bond0:128.2.205.9<0>
islpc50:1025748:1025748 [2] NCCL INFO NET/Socket : Using [0]bond0:128.2.205.9<0>
islpc50:1025747:1025747 [1] NCCL INFO Using network Socket
islpc50:1025748:1025748 [2] NCCL INFO Using network Socket
islpc50:1025746:1025832 [0] NCCL INFO Could not enable P2P between dev 1(=1a000) and dev 0(=19000)
islpc50:1025746:1025832 [0] NCCL INFO Could not enable P2P between dev 0(=19000) and dev 1(=1a000)
islpc50:1025746:1025832 [0] NCCL INFO Could not enable P2P between dev 1(=1a000) and dev 0(=19000)
islpc50:1025746:1025832 [0] NCCL INFO Could not enable P2P between dev 0(=19000) and dev 1(=1a000)
islpc50:1025748:1025834 [2] NCCL INFO Could not enable P2P between dev 1(=1a000) and dev 0(=19000)
islpc50:1025748:1025834 [2] NCCL INFO Could not enable P2P between dev 0(=19000) and dev 1(=1a000)
islpc50:1025748:1025834 [2] NCCL INFO Could not enable P2P between dev 1(=1a000) and dev 0(=19000)
islpc50:1025748:1025834 [2] NCCL INFO Could not enable P2P between dev 0(=19000) and dev 1(=1a000)
islpc50:1025747:1025833 [1] NCCL INFO Could not enable P2P between dev 1(=1a000) and dev 0(=19000)
islpc50:1025747:1025833 [1] NCCL INFO Could not enable P2P between dev 0(=19000) and dev 1(=1a000)
islpc50:1025747:1025833 [1] NCCL INFO Could not enable P2P between dev 1(=1a000) and dev 0(=19000)
islpc50:1025747:1025833 [1] NCCL INFO Could not enable P2P between dev 0(=19000) and dev 1(=1a000)
islpc50:1025747:1025833 [1] NCCL INFO Trees [0] 2/-1/-1->1->0 [1] 2/-1/-1->1->0
islpc50:1025747:1025833 [1] NCCL INFO Setting affinity for GPU 1 to ffffff
islpc50:1025748:1025834 [2] NCCL INFO Trees [0] -1/-1/-1->2->1 [1] -1/-1/-1->2->1
islpc50:1025746:1025832 [0] NCCL INFO Channel 00/02 :    0   1   2
islpc50:1025748:1025834 [2] NCCL INFO Setting affinity for GPU 2 to ffffff
islpc50:1025746:1025832 [0] NCCL INFO Channel 01/02 :    0   1   2
islpc50:1025746:1025832 [0] NCCL INFO Trees [0] 1/-1/-1->0->-1 [1] 1/-1/-1->0->-1
islpc50:1025746:1025832 [0] NCCL INFO Setting affinity for GPU 0 to ffffff
islpc50:1025747:1025833 [1] NCCL INFO Could not enable P2P between dev 1(=1a000) and dev 0(=19000)
islpc50:1025747:1025833 [1] NCCL INFO Could not enable P2P between dev 1(=1a000) and dev 0(=19000)
islpc50:1025747:1025833 [1] NCCL INFO Channel 00 : 1[1a000] -> 2[67000] via direct shared memory
islpc50:1025747:1025833 [1] NCCL INFO Channel 01 : 1[1a000] -> 2[67000] via direct shared memory
islpc50:1025746:1025832 [0] NCCL INFO Could not enable P2P between dev 0(=19000) and dev 1(=1a000)
islpc50:1025748:1025834 [2] NCCL INFO Channel 00 : 2[67000] -> 0[19000] via direct shared memory
islpc50:1025746:1025832 [0] NCCL INFO Channel 00 : 0[19000] -> 1[1a000] via direct shared memory
islpc50:1025746:1025832 [0] NCCL INFO Could not enable P2P between dev 0(=19000) and dev 1(=1a000)
islpc50:1025748:1025834 [2] NCCL INFO Channel 01 : 2[67000] -> 0[19000] via direct shared memory
islpc50:1025746:1025832 [0] NCCL INFO Channel 01 : 0[19000] -> 1[1a000] via direct shared memory
islpc50:1025748:1025834 [2] NCCL INFO Connected all rings
islpc50:1025747:1025833 [1] NCCL INFO Connected all rings
islpc50:1025746:1025832 [0] NCCL INFO Connected all rings
islpc50:1025748:1025834 [2] NCCL INFO Channel 00 : 2[67000] -> 1[1a000] via direct shared memory
islpc50:1025746:1025832 [0] NCCL INFO Could not enable P2P between dev 0(=19000) and dev 1(=1a000)
islpc50:1025748:1025834 [2] NCCL INFO Channel 01 : 2[67000] -> 1[1a000] via direct shared memory
islpc50:1025746:1025832 [0] NCCL INFO Could not enable P2P between dev 0(=19000) and dev 1(=1a000)
islpc50:1025747:1025833 [1] NCCL INFO Could not enable P2P between dev 1(=1a000) and dev 0(=19000)
islpc50:1025747:1025833 [1] NCCL INFO Channel 00 : 1[1a000] -> 0[19000] via direct shared memory
islpc50:1025747:1025833 [1] NCCL INFO Could not enable P2P between dev 1(=1a000) and dev 0(=19000)
islpc50:1025747:1025833 [1] NCCL INFO Channel 01 : 1[1a000] -> 0[19000] via direct shared memory
islpc50:1025746:1025832 [0] NCCL INFO Connected all trees
islpc50:1025746:1025832 [0] NCCL INFO threadThresholds 8/8/64 | 24/8/64 | 8/8/512
islpc50:1025746:1025832 [0] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer
islpc50:1025747:1025833 [1] NCCL INFO Connected all trees
islpc50:1025747:1025833 [1] NCCL INFO threadThresholds 8/8/64 | 24/8/64 | 8/8/512
islpc50:1025747:1025833 [1] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer
islpc50:1025748:1025834 [2] NCCL INFO Connected all trees
islpc50:1025748:1025834 [2] NCCL INFO threadThresholds 8/8/64 | 24/8/64 | 8/8/512
islpc50:1025748:1025834 [2] NCCL INFO 2 coll channels, 2 p2p channels, 2 p2p channels per peer
islpc50:1025746:1025832 [0] NCCL INFO comm 0x7f27d0002fb0 rank 0 nranks 3 cudaDev 0 busId 19000 - Init COMPLETE
islpc50:1025747:1025833 [1] NCCL INFO comm 0x7f6e2c002fb0 rank 1 nranks 3 cudaDev 1 busId 1a000 - Init COMPLETE
islpc50:1025748:1025834 [2] NCCL INFO comm 0x7f6680002fb0 rank 2 nranks 3 cudaDev 2 busId 67000 - Init COMPLETE
islpc50:1025746:1025746 [0] NCCL INFO Launch mode Parallel
[islpc50:0/3] 2022-06-06 13:44:27,683 (trainer:280) INFO: 1/18epoch started
[s3prl.upstream.experts] Warning: can not import s3prl.upstream.byol_a.expert: No module named 'easydict'. Pass.
[s3prl.hub] Warning: can not import s3prl.upstream.byol_a.hubconf: No module named 'easydict'. Please see upstream/byol_a/README.md
[s3prl.downstream.experts] Warning: can not import s3prl.downstream.quesst14_dtw.expert: No module named 'dtw'. Pass.
[s3prl.downstream.experts] Warning: can not import s3prl.downstream.separation_stft.expert: No module named 'asteroid'. Pass.
[s3prl.downstream.experts] Warning: can not import s3prl.downstream.enhancement_stft.expert: No module named 'asteroid'. Pass.
[s3prl.downstream.experts] Warning: can not import s3prl.downstream.speech_commands.expert: No module named 'catalyst'. Pass.
[s3prl.downstream.experts] Warning: can not import s3prl.downstream.a2a-vc-vctk.expert: No module named 'resemblyzer'. Pass.
[s3prl.downstream.experts] Warning: can not import s3prl.downstream.voxceleb2_ge2e.expert: No module named 'sox'. Pass.
[s3prl.downstream.experts] Warning: can not import s3prl.downstream.sv_voxceleb1.expert: No module named 'sox'. Pass.
Using cache found in ./hub/s3prl_cache/1c76d6e88090f01736036b28dc995fef583f47f42662d55286332557f957609f
for https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_vox_new.pt
>> inserted adapters to the following layers: 0, 1, 2
  * original model weights: 317,390,592
  * new model weights - all: 319,757,184
  * new model weights - trainable: 2,366,592 ( 0.75% of original model)
[s3prl.upstream.experts] Warning: can not import s3prl.upstream.byol_a.expert: No module named 'easydict'. Pass.
[s3prl.hub] Warning: can not import s3prl.upstream.byol_a.hubconf: No module named 'easydict'. Please see upstream/byol_a/README.md
[s3prl.downstream.experts] Warning: can not import s3prl.downstream.quesst14_dtw.expert: No module named 'dtw'. Pass.
[s3prl.downstream.experts] Warning: can not import s3prl.downstream.separation_stft.expert: No module named 'asteroid'. Pass.
[s3prl.downstream.experts] Warning: can not import s3prl.downstream.enhancement_stft.expert: No module named 'asteroid'. Pass.
[s3prl.downstream.experts] Warning: can not import s3prl.downstream.speech_commands.expert: No module named 'catalyst'. Pass.
[s3prl.downstream.experts] Warning: can not import s3prl.downstream.a2a-vc-vctk.expert: No module named 'resemblyzer'. Pass.
[s3prl.downstream.experts] Warning: can not import s3prl.downstream.voxceleb2_ge2e.expert: No module named 'sox'. Pass.
[s3prl.downstream.experts] Warning: can not import s3prl.downstream.sv_voxceleb1.expert: No module named 'sox'. Pass.
Using cache found in ./hub/s3prl_cache/1c76d6e88090f01736036b28dc995fef583f47f42662d55286332557f957609f
for https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_vox_new.pt
>> inserted adapters to the following layers: 0, 1, 2
  * original model weights: 317,390,592
  * new model weights - all: 319,757,184
  * new model weights - trainable: 2,366,592 ( 0.75% of original model)
[s3prl.upstream.experts] Warning: can not import s3prl.upstream.byol_a.expert: No module named 'easydict'. Pass.
[s3prl.hub] Warning: can not import s3prl.upstream.byol_a.hubconf: No module named 'easydict'. Please see upstream/byol_a/README.md
[s3prl.downstream.experts] Warning: can not import s3prl.downstream.quesst14_dtw.expert: No module named 'dtw'. Pass.
[s3prl.downstream.experts] Warning: can not import s3prl.downstream.separation_stft.expert: No module named 'asteroid'. Pass.
[s3prl.downstream.experts] Warning: can not import s3prl.downstream.enhancement_stft.expert: No module named 'asteroid'. Pass.
[s3prl.downstream.experts] Warning: can not import s3prl.downstream.speech_commands.expert: No module named 'catalyst'. Pass.
[s3prl.downstream.experts] Warning: can not import s3prl.downstream.a2a-vc-vctk.expert: No module named 'resemblyzer'. Pass.
[s3prl.downstream.experts] Warning: can not import s3prl.downstream.voxceleb2_ge2e.expert: No module named 'sox'. Pass.
[s3prl.downstream.experts] Warning: can not import s3prl.downstream.sv_voxceleb1.expert: No module named 'sox'. Pass.
Using cache found in ./hub/s3prl_cache/1c76d6e88090f01736036b28dc995fef583f47f42662d55286332557f957609f
for https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_vox_new.pt
>> inserted adapters to the following layers: 0, 1, 2
  * original model weights: 317,390,592
  * new model weights - all: 319,757,184
  * new model weights - trainable: 2,366,592 ( 0.75% of original model)
Process SpawnProcess-1:
Traceback (most recent call last):
  File "/usr/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap
    self.run()
  File "/usr/lib/python3.8/multiprocessing/process.py", line 108, in run
    self._target(*self._args, **self._kwargs)
  File "/project/ocean/junweih/espnet/espnet2/tasks/abs_task.py", line 1315, in main_worker
    cls.trainer.run(
  File "/project/ocean/junweih/espnet/espnet2/train/trainer.py", line 286, in run
    all_steps_are_invalid = cls.train_one_epoch(
  File "/project/ocean/junweih/espnet/espnet2/train/trainer.py", line 652, in train_one_epoch
    optimizer.step()
  File "/project/ocean/junweih/espnet/tools/python_user_base/lib/python3.8/site-packages/torch/optim/lr_scheduler.py", line 65, in wrapper
    return wrapped(*args, **kwargs)
  File "/project/ocean/junweih/espnet/tools/python_user_base/lib/python3.8/site-packages/torch/optim/optimizer.py", line 88, in wrapper
    return func(*args, **kwargs)
  File "/project/ocean/junweih/espnet/tools/python_user_base/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 28, in decorate_context
    return func(*args, **kwargs)
  File "/project/ocean/junweih/espnet/tools/python_user_base/lib/python3.8/site-packages/torch/optim/adam.py", line 133, in step
    F.adam(params_with_grad,
  File "/project/ocean/junweih/espnet/tools/python_user_base/lib/python3.8/site-packages/torch/optim/_functional.py", line 94, in adam
    denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps)
RuntimeError: CUDA out of memory. Tried to allocate 1020.00 MiB (GPU 0; 10.76 GiB total capacity; 8.37 GiB already allocated; 554.56 MiB free; 8.68 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
Process SpawnProcess-2:
Traceback (most recent call last):
  File "/usr/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap
    self.run()
  File "/usr/lib/python3.8/multiprocessing/process.py", line 108, in run
    self._target(*self._args, **self._kwargs)
  File "/project/ocean/junweih/espnet/espnet2/tasks/abs_task.py", line 1315, in main_worker
    cls.trainer.run(
  File "/project/ocean/junweih/espnet/espnet2/train/trainer.py", line 286, in run
    all_steps_are_invalid = cls.train_one_epoch(
  File "/project/ocean/junweih/espnet/espnet2/train/trainer.py", line 652, in train_one_epoch
    optimizer.step()
  File "/project/ocean/junweih/espnet/tools/python_user_base/lib/python3.8/site-packages/torch/optim/lr_scheduler.py", line 65, in wrapper
    return wrapped(*args, **kwargs)
  File "/project/ocean/junweih/espnet/tools/python_user_base/lib/python3.8/site-packages/torch/optim/optimizer.py", line 88, in wrapper
    return func(*args, **kwargs)
  File "/project/ocean/junweih/espnet/tools/python_user_base/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 28, in decorate_context
    return func(*args, **kwargs)
  File "/project/ocean/junweih/espnet/tools/python_user_base/lib/python3.8/site-packages/torch/optim/adam.py", line 133, in step
    F.adam(params_with_grad,
  File "/project/ocean/junweih/espnet/tools/python_user_base/lib/python3.8/site-packages/torch/optim/_functional.py", line 94, in adam
    denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps)
RuntimeError: CUDA out of memory. Tried to allocate 1020.00 MiB (GPU 1; 10.76 GiB total capacity; 8.37 GiB already allocated; 554.56 MiB free; 8.68 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
Process SpawnProcess-3:
Traceback (most recent call last):
  File "/usr/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap
    self.run()
  File "/usr/lib/python3.8/multiprocessing/process.py", line 108, in run
    self._target(*self._args, **self._kwargs)
  File "/project/ocean/junweih/espnet/espnet2/tasks/abs_task.py", line 1315, in main_worker
    cls.trainer.run(
  File "/project/ocean/junweih/espnet/espnet2/train/trainer.py", line 286, in run
    all_steps_are_invalid = cls.train_one_epoch(
  File "/project/ocean/junweih/espnet/espnet2/train/trainer.py", line 652, in train_one_epoch
    optimizer.step()
  File "/project/ocean/junweih/espnet/tools/python_user_base/lib/python3.8/site-packages/torch/optim/lr_scheduler.py", line 65, in wrapper
    return wrapped(*args, **kwargs)
  File "/project/ocean/junweih/espnet/tools/python_user_base/lib/python3.8/site-packages/torch/optim/optimizer.py", line 88, in wrapper
    return func(*args, **kwargs)
  File "/project/ocean/junweih/espnet/tools/python_user_base/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 28, in decorate_context
    return func(*args, **kwargs)
  File "/project/ocean/junweih/espnet/tools/python_user_base/lib/python3.8/site-packages/torch/optim/adam.py", line 133, in step
    F.adam(params_with_grad,
  File "/project/ocean/junweih/espnet/tools/python_user_base/lib/python3.8/site-packages/torch/optim/_functional.py", line 94, in adam
    denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps)
RuntimeError: CUDA out of memory. Tried to allocate 1020.00 MiB (GPU 2; 10.76 GiB total capacity; 8.37 GiB already allocated; 554.56 MiB free; 8.68 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
Traceback (most recent call last):
  File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
    return _run_code(code, main_globals, None,
  File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
    exec(code, run_globals)
  File "/project/ocean/junweih/espnet/espnet2/bin/asr_train.py", line 23, in <module>
    main()
  File "/project/ocean/junweih/espnet/espnet2/bin/asr_train.py", line 19, in main
    ASRTask.main(cmd=cmd)
  File "/project/ocean/junweih/espnet/espnet2/tasks/abs_task.py", line 1069, in main
    while not ProcessContext(processes, error_queues).join():
  File "/project/ocean/junweih/espnet/tools/python_user_base/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 139, in join
    raise ProcessExitedException(
torch.multiprocessing.spawn.ProcessExitedException: process 2 terminated with exit code 1
/usr/lib/python3.8/multiprocessing/resource_tracker.py:216: UserWarning: resource_tracker: There appear to be 3 leaked semaphore objects to clean up at shutdown
  warnings.warn('resource_tracker: There appear to be %d '
# Accounting: time=44 threads=1
# Ended (code 1) at Mon Jun  6 13:44:38 EDT 2022, elapsed time 44 seconds