initial commit
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 259.01 +/- 13.69
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x791694422290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x791694422320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7916944223b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x791694422440>", "_build": "<function ActorCriticPolicy._build at 0x7916944224d0>", "forward": "<function ActorCriticPolicy.forward at 0x791694422560>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7916944225f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x791694422680>", "_predict": "<function ActorCriticPolicy._predict at 0x791694422710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7916944227a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x791694422830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7916944228c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x791637417680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1733006235842191747, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqi2ryzrE8/+indvW1hp77apBS7WYEAPQAAAAAAAAAAZrhWvBQ8kztibk89tnk3vnyTR7z7p7E7AAAAAAAAAADAzog9pKAiuc1giLhi8AqzcK1Ju9I8nzcAAIA/AACAP83IKz0UcIK6GN1Nus1Kx7PVVye61mxsOQAAgD8AAIA/jWGTvcN5Rro77+E780ElNQnh8bmIey80AACAPwAAgD9mAFg+CIJAPzC8i70x07O+MOuOPcrKG70AAAAAAAAAAJq6Xz3CSZE/C2AbPjKCx77YvHs9ZYkjPAAAAAAAAAAAwGiFPcrwYT8ylM69vwN6vn5nRD0qaCq9AAAAAAAAAACa6a87w1kPuvxSJrb+WiGxc6S6uhnZQjUAAIA/AACAP2ZUeDxcEw66Owb5OyRCAzgqltC60+dONgAAgD8AAIA/MyQRPZTzsj9LTtE+lt4ovnnGZDw+vCg+AAAAAAAAAABN7Tc9rmGguqtn0TqxtKg1bfAEusr78LkAAIA/AAAAAAD9Ab3hNIm6cveNuTXldbQCzI+64PukOAAAgD8AAIA/AF+rPI8uFbpcd6w6c3wjtfXjxLtqIMm5AACAPwAAgD8zVVU9e/6SuqsCjrncyWG0SMuat8supDgAAIA/AACAP5oNrDtIMp28Y1nhOw1gFj19HAw+JrTnvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF/Ysxfv4M6MAWyUTegDjAF0lEdAmHsRNIsiCHV9lChoBkdAYUNGjKxLTWgHTegDaAhHQJh8lbX6InB1fZQoaAZHQGXtMVclgMNoB03oA2gIR0CYlQUaQ3gldX2UKGgGR0BiB2CbtqpMaAdN6ANoCEdAmJXPRu0kW3V9lChoBkdAYXKAwPAfuGgHTegDaAhHQJiZs3DNyHV1fZQoaAZHQE+/IDHOryVoB00LAWgIR0CYmj55JK8MdX2UKGgGR0Bh+d8PWhAXaAdN6ANoCEdAmJsRU3n6mHV9lChoBkdAXXqg8KXv6WgHTegDaAhHQJijiPbO/tZ1fZQoaAZHQGXNVtfoicJoB03oA2gIR0CYrB1B+nZTdX2UKGgGR0BnH+L74zrNaAdN6ANoCEdAmK8+SSvC/HV9lChoBkdAXi1+d9Ujs2gHTegDaAhHQJizgfnwG4Z1fZQoaAZHQGRAm+j/MntoB03oA2gIR0CYu7clw97odX2UKGgGR0BknGbI91U3aAdN6ANoCEdAmLxMH8jzI3V9lChoBkdAYeie/Yao/GgHTegDaAhHQJjBtelbeM11fZQoaAZHQGA4Wzv7WNFoB03oA2gIR0CYxA/i5uqFdX2UKGgGR0BgXPMlkYoBaAdN6ANoCEdAmMhsGgSOBHV9lChoBkdAYruu5jH4oWgHTegDaAhHQJjJZXS0BwN1fZQoaAZHQGXAlT3qRlpoB03oA2gIR0CYyukNnXd1dX2UKGgGR0BgIrRlYlpoaAdN6ANoCEdAmM8p3cHnlnV9lChoBkdAZFkoOQQtjGgHTegDaAhHQJjP7Llmvnt1fZQoaAZHQGPS91+y7f5oB03oA2gIR0CY5KiNKh+OdX2UKGgGR0BkgUyvcJt0aAdN6ANoCEdAmOUrcGkeqHV9lChoBkdAZTGrBj4Ho2gHTegDaAhHQJjl8JpnHvN1fZQoaAZHQGB8PRZ2ZApoB03oA2gIR0CY7TNBWxQjdX2UKGgGR0BvtMpuuRs/aAdNcQJoCEdAmO9ZoPCl8HV9lChoBkdAZTxmvnr6cmgHTegDaAhHQJj2cujASFp1fZQoaAZHQGDOBKcurZJoB03oA2gIR0CY+hLWZqmCdX2UKGgGR0Bhr4VIqbz9aAdN6ANoCEdAmP5oybhFVnV9lChoBkdAUI+3I+4b0mgHS/NoCEdAmQRk0SAYpHV9lChoBkdAZI5dTo+wDGgHTegDaAhHQJkGHsVtXPt1fZQoaAZHQF5CRGc4HX5oB03oA2gIR0CZCc9F4LThdX2UKGgGR0BnsBXlr/KhaAdN6ANoCEdAmQtcvZh8Y3V9lChoBkdAZZS/t6X0G2gHTegDaAhHQJkOHlS0jTt1fZQoaAZHQGFBmcFyJbdoB03oA2gIR0CZDu5AQg9vdX2UKGgGR0Bk/CTnq3VkaAdN6ANoCEdAmRBRLoOhCnV9lChoBkdAXM6B6KLsKWgHTegDaAhHQJkUGt6ol2N1fZQoaAZHQGJSGCROk+JoB03oA2gIR0CZFMyk9ECvdX2UKGgGR0Blh5JiAlOXaAdN6ANoCEdAmSrUX+ERJ3V9lChoBkdAXgSMUAT7EmgHTegDaAhHQJkrjMaCL/F1fZQoaAZHQGKXCcG1QZZoB03oA2gIR0CZLJ5nUUfxdX2UKGgGR0Br5TMmnfl7aAdNsQJoCEdAmS9OWjXWfHV9lChoBkdAaRC4/eLvTmgHTegDaAhHQJk03lMh5gR1fZQoaAZHQGezVmSQo1FoB03oA2gIR0CZNvtzjm0WdX2UKGgGR0Btg7hgmZ3LaAdNdAFoCEdAmTp7NSqEOHV9lChoBkdAO/shPj4pMGgHS+9oCEdAmTuaYJE6UHV9lChoBkdAcEaIqslsxmgHTZACaAhHQJlBtiobXH11fZQoaAZHQGa5F3IMjNZoB03oA2gIR0CZQ7Dfm9xqdX2UKGgGR0BRCpvgm7aqaAdL62gIR0CZQ+LLpzLfdX2UKGgGR0Bo13IyTINmaAdN6ANoCEdAmUmED6nBL3V9lChoBkdAZ0g/UONHY2gHTegDaAhHQJlLK96C17Z1fZQoaAZHQGQBseXAuZloB03oA2gIR0CZTsn2ZiNLdX2UKGgGR0BeE4Oc2BJ7aAdN6ANoCEdAmVBaRMewLXV9lChoBkdAYqJeZXuE3GgHTegDaAhHQJlUL0QK8cx1fZQoaAZHQGToFVT72tdoB03oA2gIR0CZVcVTaTOgdX2UKGgGR0BlDzGJemelaAdN6ANoCEdAmVrgmiQDFXV9lChoBkdARq9OCXhOxmgHS/ZoCEdAmVxIQe3hGnV9lChoBkdAY00v8IiTuGgHTegDaAhHQJlzZNmDlHV1fZQoaAZHQG/+S00FbFFoB00aAmgIR0CZc3JZ4fOldX2UKGgGR0BjA4fU4JeFaAdN6ANoCEdAmXPpE6T4cnV9lChoBkdAZly7Rv3rU2gHTegDaAhHQJl0r0pVjqh1fZQoaAZHQGN4QWepXIVoB03oA2gIR0CZfFKTjebedX2UKGgGR0ByR7or4FibaAdNZwJoCEdAmX54t16mf3V9lChoBkdASn+EXcgyM2gHS91oCEdAmX/Q+dK/VXV9lChoBkdAXnxuGbkOqmgHTegDaAhHQJmCUUYbbUR1fZQoaAZHQGOyka2nbZhoB03oA2gIR0CZg3XAuZkTdX2UKGgGR0A+Fum78Nx3aAdL62gIR0CZiVbO/tY0dX2UKGgGR0BiaZUNrj5saAdN6ANoCEdAmYmcxwhnrnV9lChoBkdAY/zzoUzsQmgHTegDaAhHQJmMR4hUzbh1fZQoaAZHQEErKs+3YthoB0v9aAhHQJmR9yhi9Zl1fZQoaAZHQGdJFkpZwGZoB03oA2gIR0CZlDRnezlcdX2UKGgGR0BkoCq814xDaAdN6ANoCEdAmZ6gq3EycnV9lChoBkdAYNlg75mAb2gHTegDaAhHQJmi2A08/2V1fZQoaAZHQGV/tnoPkJdoB03oA2gIR0CZpKSyt3fRdX2UKGgGR0BhiNgx8D0UaAdN6ANoCEdAmamuBYmsvXV9lChoBkdAZVxIo3JgcGgHTegDaAhHQJmq2clPact1fZQoaAZHQHC0bX+VC5VoB02uA2gIR0CZq8VpsXSCdX2UKGgGR0BwcR5mh/RWaAdNGAJoCEdAmb+lRxcVxnV9lChoBkdAYwg2Kl54W2gHTegDaAhHQJm/5mz0HyF1fZQoaAZHQGU9jvVmSQpoB03oA2gIR0CZwHIDHOrydX2UKGgGR0BQqLCFbmlqaAdL12gIR0CZwWAc1fmcdX2UKGgGR0BwONEjPfKqaAdNLwNoCEdAmcNAgX/HYHV9lChoBkdAa8IVGCqZMWgHTesBaAhHQJnLtk3CKrJ1fZQoaAZHQG+P2YfGMn9oB02aAmgIR0CZzE2B8QZodX2UKGgGR0Bkbu7g88s+aAdN6ANoCEdAmczpsCT2WnV9lChoBkdAYsdeVLSNO2gHTegDaAhHQJnRc1dgOSZ1fZQoaAZHQG7aVNpM6BBoB01gAWgIR0CZ0x59Vmz0dX2UKGgGR0BiHjamGdqdaAdN6ANoCEdAmdbZ8v24/nV9lChoBkdAYIuUypJf6WgHTegDaAhHQJnXDcTJyQx1fZQoaAZHQHG0/2oNutRoB01zAWgIR0CZ14Difg76dX2UKGgGR0BiIax7iQ1aaAdN6ANoCEdAmd49upCKJnV9lChoBkdARgrP2PDHfmgHS+NoCEdAmeHMO9WZJHV9lChoBkdAb93P1tfoimgHTa4BaAhHQJniIod+5OJ1fZQoaAZHQEWq45tFa0RoB0v7aAhHQJnjHDP4VRF1fZQoaAZHQGcqArpaA4JoB03oA2gIR0CZ6D2Q4jrzdX2UKGgGR0BspuZb6guiaAdNdgFoCEdAmelGK2rn1XV9lChoBkdAZZIvV3EAHWgHTegDaAhHQJntqqWC2+h1fZQoaAZHQGbEhGYrrgRoB03oA2gIR0CZ7p8Md92HdX2UKGgGR0BlPGEmICU5aAdN6ANoCEdAme9vJaJQ+HV9lChoBkdAbOcDoyKvV2gHTdcDaAhHQJnxOYc/+sJ1fZQoaAZHQGjDjOTq0MRoB03oA2gIR0CZ8nkeIVM3dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8f35ccdfbd772dcb5b95a1f529aea2afc0063e62bdc5682af010fe972fb87ef
|
3 |
+
size 148008
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x791694422290>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x791694422320>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7916944223b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x791694422440>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7916944224d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x791694422560>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7916944225f0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x791694422680>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x791694422710>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7916944227a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x791694422830>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7916944228c0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x791637417680>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1733006235842191747,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqi2ryzrE8/+indvW1hp77apBS7WYEAPQAAAAAAAAAAZrhWvBQ8kztibk89tnk3vnyTR7z7p7E7AAAAAAAAAADAzog9pKAiuc1giLhi8AqzcK1Ju9I8nzcAAIA/AACAP83IKz0UcIK6GN1Nus1Kx7PVVye61mxsOQAAgD8AAIA/jWGTvcN5Rro77+E780ElNQnh8bmIey80AACAPwAAgD9mAFg+CIJAPzC8i70x07O+MOuOPcrKG70AAAAAAAAAAJq6Xz3CSZE/C2AbPjKCx77YvHs9ZYkjPAAAAAAAAAAAwGiFPcrwYT8ylM69vwN6vn5nRD0qaCq9AAAAAAAAAACa6a87w1kPuvxSJrb+WiGxc6S6uhnZQjUAAIA/AACAP2ZUeDxcEw66Owb5OyRCAzgqltC60+dONgAAgD8AAIA/MyQRPZTzsj9LTtE+lt4ovnnGZDw+vCg+AAAAAAAAAABN7Tc9rmGguqtn0TqxtKg1bfAEusr78LkAAIA/AAAAAAD9Ab3hNIm6cveNuTXldbQCzI+64PukOAAAgD8AAIA/AF+rPI8uFbpcd6w6c3wjtfXjxLtqIMm5AACAPwAAgD8zVVU9e/6SuqsCjrncyWG0SMuat8supDgAAIA/AACAP5oNrDtIMp28Y1nhOw1gFj19HAw+JrTnvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF/Ysxfv4M6MAWyUTegDjAF0lEdAmHsRNIsiCHV9lChoBkdAYUNGjKxLTWgHTegDaAhHQJh8lbX6InB1fZQoaAZHQGXtMVclgMNoB03oA2gIR0CYlQUaQ3gldX2UKGgGR0BiB2CbtqpMaAdN6ANoCEdAmJXPRu0kW3V9lChoBkdAYXKAwPAfuGgHTegDaAhHQJiZs3DNyHV1fZQoaAZHQE+/IDHOryVoB00LAWgIR0CYmj55JK8MdX2UKGgGR0Bh+d8PWhAXaAdN6ANoCEdAmJsRU3n6mHV9lChoBkdAXXqg8KXv6WgHTegDaAhHQJijiPbO/tZ1fZQoaAZHQGXNVtfoicJoB03oA2gIR0CYrB1B+nZTdX2UKGgGR0BnH+L74zrNaAdN6ANoCEdAmK8+SSvC/HV9lChoBkdAXi1+d9Ujs2gHTegDaAhHQJizgfnwG4Z1fZQoaAZHQGRAm+j/MntoB03oA2gIR0CYu7clw97odX2UKGgGR0BknGbI91U3aAdN6ANoCEdAmLxMH8jzI3V9lChoBkdAYeie/Yao/GgHTegDaAhHQJjBtelbeM11fZQoaAZHQGA4Wzv7WNFoB03oA2gIR0CYxA/i5uqFdX2UKGgGR0BgXPMlkYoBaAdN6ANoCEdAmMhsGgSOBHV9lChoBkdAYruu5jH4oWgHTegDaAhHQJjJZXS0BwN1fZQoaAZHQGXAlT3qRlpoB03oA2gIR0CYyukNnXd1dX2UKGgGR0BgIrRlYlpoaAdN6ANoCEdAmM8p3cHnlnV9lChoBkdAZFkoOQQtjGgHTegDaAhHQJjP7Llmvnt1fZQoaAZHQGPS91+y7f5oB03oA2gIR0CY5KiNKh+OdX2UKGgGR0BkgUyvcJt0aAdN6ANoCEdAmOUrcGkeqHV9lChoBkdAZTGrBj4Ho2gHTegDaAhHQJjl8JpnHvN1fZQoaAZHQGB8PRZ2ZApoB03oA2gIR0CY7TNBWxQjdX2UKGgGR0BvtMpuuRs/aAdNcQJoCEdAmO9ZoPCl8HV9lChoBkdAZTxmvnr6cmgHTegDaAhHQJj2cujASFp1fZQoaAZHQGDOBKcurZJoB03oA2gIR0CY+hLWZqmCdX2UKGgGR0Bhr4VIqbz9aAdN6ANoCEdAmP5oybhFVnV9lChoBkdAUI+3I+4b0mgHS/NoCEdAmQRk0SAYpHV9lChoBkdAZI5dTo+wDGgHTegDaAhHQJkGHsVtXPt1fZQoaAZHQF5CRGc4HX5oB03oA2gIR0CZCc9F4LThdX2UKGgGR0BnsBXlr/KhaAdN6ANoCEdAmQtcvZh8Y3V9lChoBkdAZZS/t6X0G2gHTegDaAhHQJkOHlS0jTt1fZQoaAZHQGFBmcFyJbdoB03oA2gIR0CZDu5AQg9vdX2UKGgGR0Bk/CTnq3VkaAdN6ANoCEdAmRBRLoOhCnV9lChoBkdAXM6B6KLsKWgHTegDaAhHQJkUGt6ol2N1fZQoaAZHQGJSGCROk+JoB03oA2gIR0CZFMyk9ECvdX2UKGgGR0Blh5JiAlOXaAdN6ANoCEdAmSrUX+ERJ3V9lChoBkdAXgSMUAT7EmgHTegDaAhHQJkrjMaCL/F1fZQoaAZHQGKXCcG1QZZoB03oA2gIR0CZLJ5nUUfxdX2UKGgGR0Br5TMmnfl7aAdNsQJoCEdAmS9OWjXWfHV9lChoBkdAaRC4/eLvTmgHTegDaAhHQJk03lMh5gR1fZQoaAZHQGezVmSQo1FoB03oA2gIR0CZNvtzjm0WdX2UKGgGR0Btg7hgmZ3LaAdNdAFoCEdAmTp7NSqEOHV9lChoBkdAO/shPj4pMGgHS+9oCEdAmTuaYJE6UHV9lChoBkdAcEaIqslsxmgHTZACaAhHQJlBtiobXH11fZQoaAZHQGa5F3IMjNZoB03oA2gIR0CZQ7Dfm9xqdX2UKGgGR0BRCpvgm7aqaAdL62gIR0CZQ+LLpzLfdX2UKGgGR0Bo13IyTINmaAdN6ANoCEdAmUmED6nBL3V9lChoBkdAZ0g/UONHY2gHTegDaAhHQJlLK96C17Z1fZQoaAZHQGQBseXAuZloB03oA2gIR0CZTsn2ZiNLdX2UKGgGR0BeE4Oc2BJ7aAdN6ANoCEdAmVBaRMewLXV9lChoBkdAYqJeZXuE3GgHTegDaAhHQJlUL0QK8cx1fZQoaAZHQGToFVT72tdoB03oA2gIR0CZVcVTaTOgdX2UKGgGR0BlDzGJemelaAdN6ANoCEdAmVrgmiQDFXV9lChoBkdARq9OCXhOxmgHS/ZoCEdAmVxIQe3hGnV9lChoBkdAY00v8IiTuGgHTegDaAhHQJlzZNmDlHV1fZQoaAZHQG/+S00FbFFoB00aAmgIR0CZc3JZ4fOldX2UKGgGR0BjA4fU4JeFaAdN6ANoCEdAmXPpE6T4cnV9lChoBkdAZly7Rv3rU2gHTegDaAhHQJl0r0pVjqh1fZQoaAZHQGN4QWepXIVoB03oA2gIR0CZfFKTjebedX2UKGgGR0ByR7or4FibaAdNZwJoCEdAmX54t16mf3V9lChoBkdASn+EXcgyM2gHS91oCEdAmX/Q+dK/VXV9lChoBkdAXnxuGbkOqmgHTegDaAhHQJmCUUYbbUR1fZQoaAZHQGOyka2nbZhoB03oA2gIR0CZg3XAuZkTdX2UKGgGR0A+Fum78Nx3aAdL62gIR0CZiVbO/tY0dX2UKGgGR0BiaZUNrj5saAdN6ANoCEdAmYmcxwhnrnV9lChoBkdAY/zzoUzsQmgHTegDaAhHQJmMR4hUzbh1fZQoaAZHQEErKs+3YthoB0v9aAhHQJmR9yhi9Zl1fZQoaAZHQGdJFkpZwGZoB03oA2gIR0CZlDRnezlcdX2UKGgGR0BkoCq814xDaAdN6ANoCEdAmZ6gq3EycnV9lChoBkdAYNlg75mAb2gHTegDaAhHQJmi2A08/2V1fZQoaAZHQGV/tnoPkJdoB03oA2gIR0CZpKSyt3fRdX2UKGgGR0BhiNgx8D0UaAdN6ANoCEdAmamuBYmsvXV9lChoBkdAZVxIo3JgcGgHTegDaAhHQJmq2clPact1fZQoaAZHQHC0bX+VC5VoB02uA2gIR0CZq8VpsXSCdX2UKGgGR0BwcR5mh/RWaAdNGAJoCEdAmb+lRxcVxnV9lChoBkdAYwg2Kl54W2gHTegDaAhHQJm/5mz0HyF1fZQoaAZHQGU9jvVmSQpoB03oA2gIR0CZwHIDHOrydX2UKGgGR0BQqLCFbmlqaAdL12gIR0CZwWAc1fmcdX2UKGgGR0BwONEjPfKqaAdNLwNoCEdAmcNAgX/HYHV9lChoBkdAa8IVGCqZMWgHTesBaAhHQJnLtk3CKrJ1fZQoaAZHQG+P2YfGMn9oB02aAmgIR0CZzE2B8QZodX2UKGgGR0Bkbu7g88s+aAdN6ANoCEdAmczpsCT2WnV9lChoBkdAYsdeVLSNO2gHTegDaAhHQJnRc1dgOSZ1fZQoaAZHQG7aVNpM6BBoB01gAWgIR0CZ0x59Vmz0dX2UKGgGR0BiHjamGdqdaAdN6ANoCEdAmdbZ8v24/nV9lChoBkdAYIuUypJf6WgHTegDaAhHQJnXDcTJyQx1fZQoaAZHQHG0/2oNutRoB01zAWgIR0CZ14Difg76dX2UKGgGR0BiIax7iQ1aaAdN6ANoCEdAmd49upCKJnV9lChoBkdARgrP2PDHfmgHS+NoCEdAmeHMO9WZJHV9lChoBkdAb93P1tfoimgHTa4BaAhHQJniIod+5OJ1fZQoaAZHQEWq45tFa0RoB0v7aAhHQJnjHDP4VRF1fZQoaAZHQGcqArpaA4JoB03oA2gIR0CZ6D2Q4jrzdX2UKGgGR0BspuZb6guiaAdNdgFoCEdAmelGK2rn1XV9lChoBkdAZZIvV3EAHWgHTegDaAhHQJntqqWC2+h1fZQoaAZHQGbEhGYrrgRoB03oA2gIR0CZ7p8Md92HdX2UKGgGR0BlPGEmICU5aAdN6ANoCEdAme9vJaJQ+HV9lChoBkdAbOcDoyKvV2gHTdcDaAhHQJnxOYc/+sJ1fZQoaAZHQGjDjOTq0MRoB03oA2gIR0CZ8nkeIVM3dWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed2f6601bf6b8d8bcee7e843082852cfac8832fcef43a736eb8fd7e6fc089efd
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7052083acbd6922bc283a9f4d9b339bd42ee7f9255f88ded93a4b592a4bfeff9
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.5.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.0
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (177 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 259.0086285, "std_reward": 13.687859612183871, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-11-30T23:01:42.877959"}
|