Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -15,7 +15,7 @@ tags:
|
|
15 |
|
16 |
YoloV7 is a machine learning model that predicts bounding boxes and classes of objects in an image.
|
17 |
|
18 |
-
This model is an implementation of Yolo-v7 found [here](
|
19 |
This repository provides scripts to run Yolo-v7 on Qualcomm® devices.
|
20 |
More details on model performance across various devices, can be found
|
21 |
[here](https://aihub.qualcomm.com/models/yolov7).
|
@@ -30,15 +30,32 @@ More details on model performance across various devices, can be found
|
|
30 |
- Number of parameters: 6.39M
|
31 |
- Model size: 24.4 MB
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
|
35 |
|
36 |
-
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
37 |
-
| ---|---|---|---|---|---|---|---|
|
38 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 17.219 ms | 0 - 3 MB | FP16 | NPU | [Yolo-v7.tflite](https://huggingface.co/qualcomm/Yolo-v7/blob/main/Yolo-v7.tflite)
|
39 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 10.503 ms | 5 - 18 MB | FP16 | NPU | [Yolo-v7.so](https://huggingface.co/qualcomm/Yolo-v7/blob/main/Yolo-v7.so)
|
40 |
-
|
41 |
-
|
42 |
|
43 |
## Installation
|
44 |
|
@@ -94,16 +111,16 @@ device. This script does the following:
|
|
94 |
```bash
|
95 |
python -m qai_hub_models.models.yolov7.export
|
96 |
```
|
97 |
-
|
98 |
```
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
107 |
```
|
108 |
|
109 |
|
@@ -202,15 +219,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
|
|
202 |
Get more details on Yolo-v7's performance across various devices [here](https://aihub.qualcomm.com/models/yolov7).
|
203 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
204 |
|
|
|
205 |
## License
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
209 |
|
210 |
## References
|
211 |
* [YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors](https://arxiv.org/abs/2207.02696)
|
212 |
* [Source Model Implementation](https://github.com/WongKinYiu/yolov7/)
|
213 |
|
|
|
|
|
214 |
## Community
|
215 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
216 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|
|
|
15 |
|
16 |
YoloV7 is a machine learning model that predicts bounding boxes and classes of objects in an image.
|
17 |
|
18 |
+
This model is an implementation of Yolo-v7 found [here]({source_repo}).
|
19 |
This repository provides scripts to run Yolo-v7 on Qualcomm® devices.
|
20 |
More details on model performance across various devices, can be found
|
21 |
[here](https://aihub.qualcomm.com/models/yolov7).
|
|
|
30 |
- Number of parameters: 6.39M
|
31 |
- Model size: 24.4 MB
|
32 |
|
33 |
+
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
34 |
+
|---|---|---|---|---|---|---|---|---|
|
35 |
+
| Yolo-v7 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 17.188 ms | 1 - 3 MB | FP16 | NPU | [Yolo-v7.tflite](https://huggingface.co/qualcomm/Yolo-v7/blob/main/Yolo-v7.tflite) |
|
36 |
+
| Yolo-v7 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 10.527 ms | 5 - 21 MB | FP16 | NPU | [Yolo-v7.so](https://huggingface.co/qualcomm/Yolo-v7/blob/main/Yolo-v7.so) |
|
37 |
+
| Yolo-v7 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 12.235 ms | 0 - 12 MB | FP16 | NPU | [Yolo-v7.onnx](https://huggingface.co/qualcomm/Yolo-v7/blob/main/Yolo-v7.onnx) |
|
38 |
+
| Yolo-v7 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 11.658 ms | 1 - 101 MB | FP16 | NPU | [Yolo-v7.tflite](https://huggingface.co/qualcomm/Yolo-v7/blob/main/Yolo-v7.tflite) |
|
39 |
+
| Yolo-v7 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 7.221 ms | 5 - 75 MB | FP16 | NPU | [Yolo-v7.so](https://huggingface.co/qualcomm/Yolo-v7/blob/main/Yolo-v7.so) |
|
40 |
+
| Yolo-v7 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 8.179 ms | 0 - 119 MB | FP16 | NPU | [Yolo-v7.onnx](https://huggingface.co/qualcomm/Yolo-v7/blob/main/Yolo-v7.onnx) |
|
41 |
+
| Yolo-v7 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 17.172 ms | 1 - 9 MB | FP16 | NPU | [Yolo-v7.tflite](https://huggingface.co/qualcomm/Yolo-v7/blob/main/Yolo-v7.tflite) |
|
42 |
+
| Yolo-v7 | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 10.322 ms | 5 - 6 MB | FP16 | NPU | Use Export Script |
|
43 |
+
| Yolo-v7 | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 17.145 ms | 0 - 2 MB | FP16 | NPU | [Yolo-v7.tflite](https://huggingface.co/qualcomm/Yolo-v7/blob/main/Yolo-v7.tflite) |
|
44 |
+
| Yolo-v7 | SA8255 (Proxy) | SA8255P Proxy | QNN | 10.334 ms | 5 - 6 MB | FP16 | NPU | Use Export Script |
|
45 |
+
| Yolo-v7 | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 17.142 ms | 0 - 2 MB | FP16 | NPU | [Yolo-v7.tflite](https://huggingface.co/qualcomm/Yolo-v7/blob/main/Yolo-v7.tflite) |
|
46 |
+
| Yolo-v7 | SA8775 (Proxy) | SA8775P Proxy | QNN | 10.477 ms | 5 - 6 MB | FP16 | NPU | Use Export Script |
|
47 |
+
| Yolo-v7 | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 17.156 ms | 0 - 202 MB | FP16 | NPU | [Yolo-v7.tflite](https://huggingface.co/qualcomm/Yolo-v7/blob/main/Yolo-v7.tflite) |
|
48 |
+
| Yolo-v7 | SA8650 (Proxy) | SA8650P Proxy | QNN | 10.469 ms | 5 - 6 MB | FP16 | NPU | Use Export Script |
|
49 |
+
| Yolo-v7 | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 19.533 ms | 1 - 102 MB | FP16 | NPU | [Yolo-v7.tflite](https://huggingface.co/qualcomm/Yolo-v7/blob/main/Yolo-v7.tflite) |
|
50 |
+
| Yolo-v7 | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 12.605 ms | 5 - 61 MB | FP16 | NPU | Use Export Script |
|
51 |
+
| Yolo-v7 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 12.241 ms | 1 - 69 MB | FP16 | NPU | [Yolo-v7.tflite](https://huggingface.co/qualcomm/Yolo-v7/blob/main/Yolo-v7.tflite) |
|
52 |
+
| Yolo-v7 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 5.825 ms | 5 - 70 MB | FP16 | NPU | Use Export Script |
|
53 |
+
| Yolo-v7 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 8.115 ms | 6 - 86 MB | FP16 | NPU | [Yolo-v7.onnx](https://huggingface.co/qualcomm/Yolo-v7/blob/main/Yolo-v7.onnx) |
|
54 |
+
| Yolo-v7 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 10.949 ms | 5 - 5 MB | FP16 | NPU | Use Export Script |
|
55 |
+
| Yolo-v7 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 14.157 ms | 9 - 9 MB | FP16 | NPU | [Yolo-v7.onnx](https://huggingface.co/qualcomm/Yolo-v7/blob/main/Yolo-v7.onnx) |
|
56 |
|
57 |
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
## Installation
|
61 |
|
|
|
111 |
```bash
|
112 |
python -m qai_hub_models.models.yolov7.export
|
113 |
```
|
|
|
114 |
```
|
115 |
+
Profiling Results
|
116 |
+
------------------------------------------------------------
|
117 |
+
Yolo-v7
|
118 |
+
Device : Samsung Galaxy S23 (13)
|
119 |
+
Runtime : TFLITE
|
120 |
+
Estimated inference time (ms) : 17.2
|
121 |
+
Estimated peak memory usage (MB): [1, 3]
|
122 |
+
Total # Ops : 215
|
123 |
+
Compute Unit(s) : NPU (215 ops)
|
124 |
```
|
125 |
|
126 |
|
|
|
219 |
Get more details on Yolo-v7's performance across various devices [here](https://aihub.qualcomm.com/models/yolov7).
|
220 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
221 |
|
222 |
+
|
223 |
## License
|
224 |
+
* The license for the original implementation of Yolo-v7 can be found [here](https://github.com/WongKinYiu/yolov7/blob/main/LICENSE.md).
|
225 |
+
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/WongKinYiu/yolov7/blob/main/LICENSE.md)
|
226 |
+
|
227 |
+
|
228 |
|
229 |
## References
|
230 |
* [YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors](https://arxiv.org/abs/2207.02696)
|
231 |
* [Source Model Implementation](https://github.com/WongKinYiu/yolov7/)
|
232 |
|
233 |
+
|
234 |
+
|
235 |
## Community
|
236 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
237 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|