Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -36,34 +36,33 @@ More details on model performance across various devices, can be found
|
|
36 |
|
37 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
|---|---|---|---|---|---|---|---|---|
|
39 |
-
| YOLOv11-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 6.
|
40 |
-
| YOLOv11-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX |
|
41 |
-
| YOLOv11-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 4.
|
42 |
-
| YOLOv11-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX |
|
43 |
-
| YOLOv11-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 4.
|
44 |
-
| YOLOv11-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 88.
|
45 |
-
| YOLOv11-Segmentation | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 6.
|
46 |
-
| YOLOv11-Segmentation | SA7255P ADP | SA7255P | TFLITE | 81.
|
47 |
-
| YOLOv11-Segmentation | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 6.
|
48 |
-
| YOLOv11-Segmentation | SA8295P ADP | SA8295P | TFLITE | 12.
|
49 |
-
| YOLOv11-Segmentation | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 6.
|
50 |
-
| YOLOv11-Segmentation | SA8775P ADP | SA8775P | TFLITE | 10.
|
51 |
-
| YOLOv11-Segmentation | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 10.
|
52 |
-
| YOLOv11-Segmentation | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX |
|
53 |
|
54 |
|
55 |
|
56 |
|
57 |
## Installation
|
58 |
|
59 |
-
This model can be installed as a Python package via pip.
|
60 |
|
|
|
61 |
```bash
|
62 |
-
pip install "qai-hub-models[
|
63 |
```
|
64 |
|
65 |
|
66 |
-
|
67 |
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
68 |
|
69 |
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
@@ -115,7 +114,7 @@ YOLOv11-Segmentation
|
|
115 |
Device : Samsung Galaxy S23 (13)
|
116 |
Runtime : TFLITE
|
117 |
Estimated inference time (ms) : 6.7
|
118 |
-
Estimated peak memory usage (MB): [4,
|
119 |
Total # Ops : 429
|
120 |
Compute Unit(s) : NPU (429 ops)
|
121 |
```
|
@@ -142,7 +141,7 @@ from qai_hub_models.models.yolov11_seg import Model
|
|
142 |
torch_model = Model.from_pretrained()
|
143 |
|
144 |
# Device
|
145 |
-
device = hub.Device("Samsung Galaxy
|
146 |
|
147 |
# Trace model
|
148 |
input_shape = torch_model.get_input_spec()
|
@@ -234,7 +233,8 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
234 |
|
235 |
|
236 |
## License
|
237 |
-
* The license for the original implementation of YOLOv11-Segmentation can be found
|
|
|
238 |
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE)
|
239 |
|
240 |
|
|
|
36 |
|
37 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
|---|---|---|---|---|---|---|---|---|
|
39 |
+
| YOLOv11-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 6.693 ms | 4 - 23 MB | FP16 | NPU | [YOLOv11-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv11-Segmentation/blob/main/YOLOv11-Segmentation.tflite) |
|
40 |
+
| YOLOv11-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 123.821 ms | 95 - 109 MB | FP32 | CPU | [YOLOv11-Segmentation.onnx](https://huggingface.co/qualcomm/YOLOv11-Segmentation/blob/main/YOLOv11-Segmentation.onnx) |
|
41 |
+
| YOLOv11-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 4.927 ms | 4 - 61 MB | FP16 | NPU | [YOLOv11-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv11-Segmentation/blob/main/YOLOv11-Segmentation.tflite) |
|
42 |
+
| YOLOv11-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 83.391 ms | 101 - 129 MB | FP32 | CPU | [YOLOv11-Segmentation.onnx](https://huggingface.co/qualcomm/YOLOv11-Segmentation/blob/main/YOLOv11-Segmentation.onnx) |
|
43 |
+
| YOLOv11-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 4.723 ms | 4 - 57 MB | FP16 | NPU | [YOLOv11-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv11-Segmentation/blob/main/YOLOv11-Segmentation.tflite) |
|
44 |
+
| YOLOv11-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 88.892 ms | 100 - 115 MB | FP32 | CPU | [YOLOv11-Segmentation.onnx](https://huggingface.co/qualcomm/YOLOv11-Segmentation/blob/main/YOLOv11-Segmentation.onnx) |
|
45 |
+
| YOLOv11-Segmentation | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 6.725 ms | 4 - 27 MB | FP16 | NPU | [YOLOv11-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv11-Segmentation/blob/main/YOLOv11-Segmentation.tflite) |
|
46 |
+
| YOLOv11-Segmentation | SA7255P ADP | SA7255P | TFLITE | 81.221 ms | 4 - 51 MB | FP16 | NPU | [YOLOv11-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv11-Segmentation/blob/main/YOLOv11-Segmentation.tflite) |
|
47 |
+
| YOLOv11-Segmentation | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 6.681 ms | 4 - 27 MB | FP16 | NPU | [YOLOv11-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv11-Segmentation/blob/main/YOLOv11-Segmentation.tflite) |
|
48 |
+
| YOLOv11-Segmentation | SA8295P ADP | SA8295P | TFLITE | 12.22 ms | 4 - 42 MB | FP16 | NPU | [YOLOv11-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv11-Segmentation/blob/main/YOLOv11-Segmentation.tflite) |
|
49 |
+
| YOLOv11-Segmentation | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 6.739 ms | 4 - 22 MB | FP16 | NPU | [YOLOv11-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv11-Segmentation/blob/main/YOLOv11-Segmentation.tflite) |
|
50 |
+
| YOLOv11-Segmentation | SA8775P ADP | SA8775P | TFLITE | 10.058 ms | 4 - 52 MB | FP16 | NPU | [YOLOv11-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv11-Segmentation/blob/main/YOLOv11-Segmentation.tflite) |
|
51 |
+
| YOLOv11-Segmentation | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 10.725 ms | 4 - 43 MB | FP16 | NPU | [YOLOv11-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv11-Segmentation/blob/main/YOLOv11-Segmentation.tflite) |
|
52 |
+
| YOLOv11-Segmentation | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 32.261 ms | 117 - 117 MB | FP32 | CPU | [YOLOv11-Segmentation.onnx](https://huggingface.co/qualcomm/YOLOv11-Segmentation/blob/main/YOLOv11-Segmentation.onnx) |
|
53 |
|
54 |
|
55 |
|
56 |
|
57 |
## Installation
|
58 |
|
|
|
59 |
|
60 |
+
Install the package via pip:
|
61 |
```bash
|
62 |
+
pip install "qai-hub-models[yolov11-seg]"
|
63 |
```
|
64 |
|
65 |
|
|
|
66 |
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
67 |
|
68 |
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
|
|
114 |
Device : Samsung Galaxy S23 (13)
|
115 |
Runtime : TFLITE
|
116 |
Estimated inference time (ms) : 6.7
|
117 |
+
Estimated peak memory usage (MB): [4, 23]
|
118 |
Total # Ops : 429
|
119 |
Compute Unit(s) : NPU (429 ops)
|
120 |
```
|
|
|
141 |
torch_model = Model.from_pretrained()
|
142 |
|
143 |
# Device
|
144 |
+
device = hub.Device("Samsung Galaxy S24")
|
145 |
|
146 |
# Trace model
|
147 |
input_shape = torch_model.get_input_spec()
|
|
|
233 |
|
234 |
|
235 |
## License
|
236 |
+
* The license for the original implementation of YOLOv11-Segmentation can be found
|
237 |
+
[here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
|
238 |
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE)
|
239 |
|
240 |
|