Quentin Gallouédec
commited on
Commit
·
965fd45
1
Parent(s):
3ebaa10
Initial commit
Browse files- .gitattributes +1 -0
- README.md +75 -0
- args.yml +83 -0
- config.yml +17 -0
- ddpg-HopperStandDMC-v0.zip +3 -0
- ddpg-HopperStandDMC-v0/_stable_baselines3_version +1 -0
- ddpg-HopperStandDMC-v0/actor.optimizer.pth +3 -0
- ddpg-HopperStandDMC-v0/critic.optimizer.pth +3 -0
- ddpg-HopperStandDMC-v0/data +137 -0
- ddpg-HopperStandDMC-v0/policy.pth +3 -0
- ddpg-HopperStandDMC-v0/pytorch_variables.pth +3 -0
- ddpg-HopperStandDMC-v0/system_info.txt +7 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- HopperStandDMC-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DDPG
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: HopperStandDMC-v0
|
16 |
+
type: HopperStandDMC-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 816.17 +/- 50.67
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **DDPG** Agent playing **HopperStandDMC-v0**
|
25 |
+
This is a trained model of a **DDPG** agent playing **HopperStandDMC-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo ddpg --env HopperStandDMC-v0 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo ddpg --env HopperStandDMC-v0 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo ddpg --env HopperStandDMC-v0 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo ddpg --env HopperStandDMC-v0 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo ddpg --env HopperStandDMC-v0 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo ddpg --env HopperStandDMC-v0 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 64),
|
66 |
+
('gamma', 0.99),
|
67 |
+
('learning_rate', 0.0001),
|
68 |
+
('n_timesteps', 1000000.0),
|
69 |
+
('noise_std', 0.3),
|
70 |
+
('noise_type', 'ornstein-uhlenbeck'),
|
71 |
+
('policy', 'MlpPolicy'),
|
72 |
+
('policy_kwargs',
|
73 |
+
'dict(net_arch=dict(pi=[300, 200], qf=[400, 300]))'),
|
74 |
+
('normalize', False)])
|
75 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ddpg
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- HopperStandDMC-v0
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 20
|
14 |
+
- - eval_freq
|
15 |
+
- 25000
|
16 |
+
- - gym_packages
|
17 |
+
- []
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- logs
|
22 |
+
- - log_interval
|
23 |
+
- -1
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 5
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- -1
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- false
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- -1
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 1253562931
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- runs/HopperStandDMC-v0__ddpg__1253562931__1673811056
|
64 |
+
- - track
|
65 |
+
- true
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- qgallouedec
|
78 |
+
- - wandb_project_name
|
79 |
+
- dmc
|
80 |
+
- - wandb_tags
|
81 |
+
- []
|
82 |
+
- - yaml_file
|
83 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 64
|
4 |
+
- - gamma
|
5 |
+
- 0.99
|
6 |
+
- - learning_rate
|
7 |
+
- 0.0001
|
8 |
+
- - n_timesteps
|
9 |
+
- 1000000.0
|
10 |
+
- - noise_std
|
11 |
+
- 0.3
|
12 |
+
- - noise_type
|
13 |
+
- ornstein-uhlenbeck
|
14 |
+
- - policy
|
15 |
+
- MlpPolicy
|
16 |
+
- - policy_kwargs
|
17 |
+
- dict(net_arch=dict(pi=[300, 200], qf=[400, 300]))
|
ddpg-HopperStandDMC-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1444328231df5dafdfe7b8cb881056851f8be2a6d6fc62576e79ac570499900
|
3 |
+
size 3153602
|
ddpg-HopperStandDMC-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ddpg-HopperStandDMC-v0/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5b7332ccdcf8163d23bbb9771623e7f87aefcd90a6d879dd30e1b78d0e0412a
|
3 |
+
size 531247
|
ddpg-HopperStandDMC-v0/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c772a36b21695ada431940361cc383d3490ae77525cf34b48556e403a4ba422
|
3 |
+
size 1033455
|
ddpg-HopperStandDMC-v0/data
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.td3.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function TD3Policy.__init__ at 0x122698280>",
|
8 |
+
"_build": "<function TD3Policy._build at 0x122698310>",
|
9 |
+
"_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x1226983a0>",
|
10 |
+
"make_actor": "<function TD3Policy.make_actor at 0x122698430>",
|
11 |
+
"make_critic": "<function TD3Policy.make_critic at 0x1226984c0>",
|
12 |
+
"forward": "<function TD3Policy.forward at 0x122698550>",
|
13 |
+
"_predict": "<function TD3Policy._predict at 0x1226985e0>",
|
14 |
+
"set_training_mode": "<function TD3Policy.set_training_mode at 0x122698670>",
|
15 |
+
"__abstractmethods__": "frozenset()",
|
16 |
+
"_abc_impl": "<_abc._abc_data object at 0x1222c3840>"
|
17 |
+
},
|
18 |
+
"verbose": 1,
|
19 |
+
"policy_kwargs": {
|
20 |
+
"net_arch": {
|
21 |
+
"pi": [
|
22 |
+
300,
|
23 |
+
200
|
24 |
+
],
|
25 |
+
"qf": [
|
26 |
+
400,
|
27 |
+
300
|
28 |
+
]
|
29 |
+
},
|
30 |
+
"n_critics": 1
|
31 |
+
},
|
32 |
+
"observation_space": {
|
33 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
34 |
+
":serialized:": "gAWVlgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLD4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWPAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLD4WUjAFDlHSUUpSMBGhpZ2iUaBMoljwAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgLSw+FlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWDwAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLD4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIksPhZRoFnSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgTKJbACQAAAAAAAAAAAIAplkbtMmEL2UqzLzNj9AcGRHdNKrBdMcX2+jm6g4N2UczHiwvsev6LvXP/Dts6sMLOJc6X+ZfyD03FbpihIGTu86ujNB1NSp8VOFxCTxtHQi2L5n7Ai52zT+viQWmnzUi4qmF2Dc43Xwa5Hc4h3wGdC3SZPaejrBBzh9hxzQRLI1LSzw7mBf1+NYNuHGxqopnwV91plW92wtMlphGOpD7oQPxS7zIV7DUs8E+9U4o19ge50jRro+8MG5er0SVcb2wXmGsyk5akPUYeffBb0U93G0130x4ojCqF5wxCvgsgVLItwDY7aSroOqKC4JRWIYYTy571IzMaO05jtwHTf0hOevnGhXfui6mx5zHZQetycxl3QL++y4+KS9nlWAGHyyk+52PLJ7TjhpLkaYvkrkzsLzVGwQhK/qGHKx46SS3WzZ2Ln0d/xL2a/IqQT1gH6PUKiFsgzx/AK7wzBfL+dAff6Hbn0IUFthSbCMprSzdIi4yF1CeZ2XZPNR/lKMxAqmnD6VXNgC3Tt+PSNP47RxlTzsjn929VCDRywTQLsvmHRWJJ06742a9y5Xka0XSaxTVNHOKPZI5jzRsv/1s30cVJobX40mZkfC7mlDPVbGHSCc5g1VmHpr6JRw3PO1bMjoO7BNOftMaGXG07oLmYKGppxMVagDsxm5XgwRf3FAL+w1dCwyC/QfPnGvf1uwTV/cPWT5UqahEcq1sbhHJshNYCihwXmbw3QaO4uJ4b+K/z9rrfLmSt0azvpZY/uWNzdn0Da1bTI86x+vht9FGqkHFZGvYGHoxsqjCYmgvaF8lDwyBjbBF85TOy+Pk0ZZdD35Mv6x+0+fVKS0hsJWWQFVUvyMBsYWcMBvzHKGnwyU3aOgakvSsHwljgy6ruQK/QnLm3UpvRnz7mJO/8ioGCF1vVzQcWdoOnKnJiHHevkEydnZn+t0HQZ/vembL7yc0PwYyDArpBoeWaK/7KHr/28MVnyR1mUWj/p3XWH6j/Y3L8+UHLavThCO/KcadhMiECNcjkmLufzjv9XI13vkzLDO9eg4SXVWteCJtt12q2vHkQ1/eAX9s5u3QUoLMskGd5CcFwPTP7iV1sxGgs0DaKAFFhXImXFN1+NDyqrRM7uduVosufC2b3Y9rP7Z3JWpvbJZyojfXzfPUGjD9+9jshguxgXehoAINmJ1+VtIPlXGs7O8cGEHwZsWw28StVPHZfJ9GqoRf8Ju3SWk2FZTjdPLkgIc+5heDSv765uwWSsG0y75JeE/Irsg22Uzf3fMui02x0mgFDAoxYmyZoBtucinoJ9ud0VuX2WD2VMN8upTQpmwahQNP2H/ULjNtH3RBYMeDGoIp5yag99bOIBeGFDt5efrzvMs1r7OdhT9txrpAE/oqHFGlSsh9slsZOVJO0AyuLGGbbDrlz+3MpaePLc+CmDP1VkukCD2aZ1r+f507/pae0dm1kDssuyOU498m3OAW0wEtmiGDpe+nfz1sqrtpcMP5H1xvLxZaqzdk719sX0bDf6/rcP7RZc4+0kSa4bkbwFi5DNxSr8A/XcmuOlaTNMdROEo3NfVmaqjdTqhOG4Ou+XjXkGUe8XXA0lty+AK5DfHw28PbZOygsN8UbAmcVTdU1buOVJ4oFbzp/GRR/j6jejlL6G3F8MfB/ao/ODEGUS+a5Qhw3kKJRzn7M847a3goqxGBvuL9JfLDdS4cIy6tIpWWTvdYhuZG9iHpxj5QMZOb2TC2Eovcgo2b/dnXFypJyqUJ8FGCT/46XVHTlpgORc/aUwJpNlX4ogvKFZvE3z9Cvw3BXnOZ6KyaTFFq5HoDtYgsaRXudlWF+ez9qD14pxaR1QRAGdjGUVVNH5HGX/kJ/PbE+O/OuJaTr3HjeeTw6OktDVfQHgeImdO3/uw30+VqzR8QvqSFBK/8eYprB7TLfKGs76qH5E9oCAskJO37dKo/tvIws2iOfzApQQLF4zTLK9yMCi73dP20u5ZUzq9K2qH/zfXcHCh1Q2XR5UmREgzz0bAg8RTI2uVb09llIfSXV7VcIhJ0C3pjzPtb743fJNI/nLn0/OGYas/7ornA5OvKFZ3MQ1MHu46arDBfoSDXhzTYiBK0qVijiLHvT+zQyINNdRzLIoKMt0TuhArRB1V5STgdN9RZWrZfH/9pO9tq0d/MX6l8TC3uEEYMV6pN3+m+ppmiKWCFgBE13BqJDYEA6Jazc5RDMwNJO+vx9EoS3qoaSgCjMaNrPeqzApMI6zU3n0e7t3AQB7o09Fb1zAWe/gpdVg3pdc5onSgUTcZQ58xKOC51O2DibA3Xa1BNHOyt1/SlR1rbPxV8aB+xZsCScOOjiSQB5IQQP8puswq4DkJfgDs3aBQi/erFZMT+X/74FAonmuNJnqI1W82TXFWvKFWTxV1n1yajqjcgYOnXx4VOmqVlDmHBObMh+MevtajDYsfm4oXkm+nk3DnOefQCx5iA3P7NRElpMfAdDAjOP3VMGQEXZErBWcQnHCgFFne699rCzyNFuftD3myWoDzHPtgcsh9AbyW8fspSiesMOB2eWKmc+li6y4dWCeOdD4h0NR2R6EHzMKOaxbez+szadWNDMqGVPytQrBoSf/3oTOpXlmOjfl3CNxDTibqWCB1vPSy9xyjePEVSZcveXjbfkGb1tapd4wRwZ6AIAZsPUzqX7Pj2QrQjz4bl/aZxseMI8fdiYPyELqvDoTIWlUkiySIvOCbka4aYirONFVeDvmIOGfiKEKePfdzyfUVSKzyYWvNmkl5I9AFLtTNSEGrLR7VOTfOtvkaiHMuKlzHckQC0nWCEPFpFz1pgkiVUVraER66XwNFql0Wt8hx5+WdqrBrPpxdsTKjgTEPjujIwvYjZx1+p+KeiR5bVTiDqnHvnKB/G3/YjXppYwQjWXnYfT5FXCvSZSBRrGTmgVK4vzzm2UodsoGIaZ0nykqRhrYeUuL5tVVT/ldEQ99R/RWQZqKeG9/PwDERP7kC9pGP6aPjvrweCCXAadofDz3b1j9b7EswKYh4BQWvewmPG0nQSfDosmRX+Vtx9UHsKf6hKlfyQdXJE/Lw++64eWobb5+xf6s72PUe3s4/sxKeqQBhKnr8mziYp7WwvJPvWlQhXSekhN+JJoQsZdSYRLuGeif9ZAEWV9PIQMUK6Bk9wVg3oD75V4WnznA4ARTpyNDkJf9RpC6X44K9Km6Lw13SY4CUqdmDbJZBq594EKSrgh+tH1575s+5apHn+zGLjM9zXyRakL3a/qdnJ6ZY6p5Op9w30arkIkj+mxqrVoz9HYmRK6zmpUYIZZ3OcDokjCkcxI/ArvZp/fUJRoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGJNcAKFlGgWdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
|
35 |
+
"dtype": "float32",
|
36 |
+
"_shape": [
|
37 |
+
15
|
38 |
+
],
|
39 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf]",
|
40 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
|
41 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False]",
|
42 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False]",
|
43 |
+
"_np_random": "RandomState(MT19937)"
|
44 |
+
},
|
45 |
+
"action_space": {
|
46 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
47 |
+
":serialized:": "gAWVKAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgLSwSFlIwBQ5R0lFKUjARoaWdolGgTKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYEAAAAAAAAAAEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYEAAAAAAAAAAEBAQGUaCJLBIWUaBZ0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC6MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEyiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAiMAnU0lImIh5RSlChLA2gMTk5OSv////9K/////0sAdJRiTXAChZRoFnSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
48 |
+
"dtype": "float32",
|
49 |
+
"_shape": [
|
50 |
+
4
|
51 |
+
],
|
52 |
+
"low": "[-1. -1. -1. -1.]",
|
53 |
+
"high": "[1. 1. 1. 1.]",
|
54 |
+
"bounded_below": "[ True True True True]",
|
55 |
+
"bounded_above": "[ True True True True]",
|
56 |
+
"_np_random": "RandomState(MT19937)"
|
57 |
+
},
|
58 |
+
"n_envs": 1,
|
59 |
+
"num_timesteps": 1000000,
|
60 |
+
"_total_timesteps": 1000000,
|
61 |
+
"_num_timesteps_at_start": 0,
|
62 |
+
"seed": 0,
|
63 |
+
"action_noise": {
|
64 |
+
":type:": "<class 'stable_baselines3.common.noise.OrnsteinUhlenbeckActionNoise'>",
|
65 |
+
":serialized:": "gAWVnQEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMHE9ybnN0ZWluVWhsZW5iZWNrQWN0aW9uTm9pc2WUk5QpgZR9lCiMBl90aGV0YZRHP8MzMzMzMzOMA19tdZSMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksEhZSMAUOUdJRSlIwGX3NpZ21hlGgJKJYgAAAAAAAAADMzMzMzM9M/MzMzMzMz0z8zMzMzMzPTPzMzMzMzM9M/lGgQSwSFlGgUdJRSlIwDX2R0lEc/hHrhR64Ue4wNaW5pdGlhbF9ub2lzZZROjApub2lzZV9wcmV2lGgJKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgQSwSFlGgUdJRSlHViLg==",
|
66 |
+
"_theta": 0.15,
|
67 |
+
"_mu": "[0. 0. 0. 0.]",
|
68 |
+
"_sigma": "[0.3 0.3 0.3 0.3]",
|
69 |
+
"_dt": 0.01,
|
70 |
+
"initial_noise": null,
|
71 |
+
"noise_prev": "[0. 0. 0. 0.]"
|
72 |
+
},
|
73 |
+
"start_time": 1673811059348840707,
|
74 |
+
"learning_rate": {
|
75 |
+
":type:": "<class 'function'>",
|
76 |
+
":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9ncGZzZHN3b3JrL3Byb2plY3RzL3JlY2gvdWxpL3VwZjgyc3AvZW52X2RtYy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL2dwZnNkc3dvcmsvcHJvamVjdHMvcmVjaC91bGkvdXBmODJzcC9lbnZfZG1jL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
77 |
+
},
|
78 |
+
"tensorboard_log": "runs/HopperStandDMC-v0__ddpg__3948988175__1673811056/HopperStandDMC-v0",
|
79 |
+
"lr_schedule": {
|
80 |
+
":type:": "<class 'function'>",
|
81 |
+
":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9ncGZzZHN3b3JrL3Byb2plY3RzL3JlY2gvdWxpL3VwZjgyc3AvZW52X2RtYy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL2dwZnNkc3dvcmsvcHJvamVjdHMvcmVjaC91bGkvdXBmODJzcC9lbnZfZG1jL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
82 |
+
},
|
83 |
+
"_last_obs": null,
|
84 |
+
"_last_episode_starts": {
|
85 |
+
":type:": "<class 'numpy.ndarray'>",
|
86 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
87 |
+
},
|
88 |
+
"_last_original_obs": {
|
89 |
+
":type:": "<class 'numpy.ndarray'>",
|
90 |
+
":serialized:": "gAWVsQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJY8AAAAAAAAAP0CZ7+/AIC/54gGv1MfEb4pTa49j1xJPyG2tT2mJlU+WEtsPyS+0bsjRVq/CG/OuS5x2LsAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsPhpSMAUOUdJRSlC4="
|
91 |
+
},
|
92 |
+
"_episode_num": 1000,
|
93 |
+
"use_sde": false,
|
94 |
+
"sde_sample_freq": -1,
|
95 |
+
"_current_progress_remaining": 0.0,
|
96 |
+
"ep_info_buffer": {
|
97 |
+
":type:": "<class 'collections.deque'>",
|
98 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIttjts4oIeECUhpRSlIwBbJRN6AOMAXSUR0DBg4vzg/C7dX2UKGgGaAloD0MIQdMSKyMrbUCUhpRSlGgVTegDaBZHQMGH9ndfsu51fZQoaAZoCWgPQwi6S+KsyG18QJSGlFKUaBVN6ANoFkdAwYxgmsNlRXV9lChoBmgJaA9DCBlxAWiUim5AlIaUUpRoFU3oA2gWR0DBkM11dPcjdX2UKGgGaAloD0MIpONqZFetgUCUhpRSlGgVTegDaBZHQMGVPEAYHgR1fZQoaAZoCWgPQwjsv85NG696QJSGlFKUaBVN6ANoFkdAwZmZrKvFFXV9lChoBmgJaA9DCOJWQQx0iXBAlIaUUpRoFU3oA2gWR0DBngLYNAkcdX2UKGgGaAloD0MIR+hn6rVQgkCUhpRSlGgVTegDaBZHQMGibDq4YrJ1fZQoaAZoCWgPQwj3BfTCXYh3QJSGlFKUaBVN6ANoFkdAwabWeI2wV3V9lChoBmgJaA9DCGQCfo3khHNAlIaUUpRoFU3oA2gWR0DBqz7LSuyNdX2UKGgGaAloD0MIKQRyiSMld0CUhpRSlGgVTegDaBZHQMGvoORcNYt1fZQoaAZoCWgPQwgPgLir11ByQJSGlFKUaBVN6ANoFkdAwbQMsjmjkHV9lChoBmgJaA9DCKFoHsAic1VAlIaUUpRoFU3oA2gWR0DBuHpokAxSdX2UKGgGaAloD0MIMBLacq76d0CUhpRSlGgVTegDaBZHQMG85O/+Kj11fZQoaAZoCWgPQwgI6SlyCM59QJSGlFKUaBVN6ANoFkdAwcFOeNkvsnV9lChoBmgJaA9DCAdfmEwVi3dAlIaUUpRoFU3oA2gWR0DBxbkJhOQAdX2UKGgGaAloD0MI+Kbps8POeECUhpRSlGgVTegDaBZHQMHKI3okiUx1fZQoaAZoCWgPQwhsXtVZ7YdwQJSGlFKUaBVN6ANoFkdAwc6Ofe1rqXV9lChoBmgJaA9DCOvFUE40q3FAlIaUUpRoFU3oA2gWR0DB0vhOafBfdX2UKGgGaAloD0MIrU7OUFxYe0CUhpRSlGgVTegDaBZHQMHXTM/IKdB1fZQoaAZoCWgPQwhWYwlrI6NwQJSGlFKUaBVN6ANoFkdAwdumhFEy+HV9lChoBmgJaA9DCCtLdJbZ7XJAlIaUUpRoFU3oA2gWR0DB4AqY1He8dX2UKGgGaAloD0MIoPmcu11PG0CUhpRSlGgVTegDaBZHQMHkd4Kpkwx1fZQoaAZoCWgPQwhDjxg9t+9tQJSGlFKUaBVN6ANoFkdAwejkHdGiH3V9lChoBmgJaA9DCED2evcHaHhAlIaUUpRoFU3oA2gWR0DB7U7GBFuvdX2UKGgGaAloD0MIUg/R6A6PeECUhpRSlGgVTegDaBZHQMH06KSxJNF1fZQoaAZoCWgPQwjkuinldZt7QJSGlFKUaBVN6ANoFkdAwflSa/ATI3V9lChoBmgJaA9DCBSvsrZpWX1AlIaUUpRoFU3oA2gWR0DB/b/ObAk+dX2UKGgGaAloD0MIx9eeWZIbdECUhpRSlGgVTegDaBZHQMICI889wFV1fZQoaAZoCWgPQwhLW1zjs79jQJSGlFKUaBVN6ANoFkdAwgaJIMjNZHV9lChoBmgJaA9DCGAjSRBugXFAlIaUUpRoFU3oA2gWR0DCCtfGjsUqdX2UKGgGaAloD0MIWvJ4Wj68e0CUhpRSlGgVTegDaBZHQMIPJedbxEx1fZQoaAZoCWgPQwixqIjTSZ5YQJSGlFKUaBVN6ANoFkdAwhNyoGY8dXV9lChoBmgJaA9DCIXP1sHBH1tAlIaUUpRoFU3oA2gWR0DCF72HnEEUdX2UKGgGaAloD0MIRgvQthqfeUCUhpRSlGgVTegDaBZHQMIcCsVclgN1fZQoaAZoCWgPQwjmPc404SlqQJSGlFKUaBVN6ANoFkdAwiBRnQpnYnV9lChoBmgJaA9DCC3r/rGQuGdAlIaUUpRoFU3oA2gWR0DCJJ85MlC1dX2UKGgGaAloD0MI2PM1y+XheECUhpRSlGgVTegDaBZHQMIo7EYwZfl1fZQoaAZoCWgPQwiQLjatFAZuQJSGlFKUaBVN6ANoFkdAwi04h/RVqHV9lChoBmgJaA9DCFCm0eQiSnJAlIaUUpRoFU3oA2gWR0DCMYVjZteldX2UKGgGaAloD0MIfcwHBLolY0CUhpRSlGgVTegDaBZHQMI10ppeu3d1fZQoaAZoCWgPQwgfD313a+d4QJSGlFKUaBVN6ANoFkdAwjofCGetjnV9lChoBmgJaA9DCJxR81Xy53lAlIaUUpRoFU3oA2gWR0DCPm+a+evqdX2UKGgGaAloD0MIF9S3zGmzbkCUhpRSlGgVTegDaBZHQMJCvr+xW1d1fZQoaAZoCWgPQwiIu3oVmXF2QJSGlFKUaBVN6ANoFkdAwkcKvtdAxHV9lChoBmgJaA9DCJs90ArMun1AlIaUUpRoFU3oA2gWR0DCS1WR/3FldX2UKGgGaAloD0MIz0vFxvzff0CUhpRSlGgVTegDaBZHQMJPoP1+RYB1fZQoaAZoCWgPQwiwcJLmT1t1QJSGlFKUaBVN6ANoFkdAwlPtUH6dlXV9lChoBmgJaA9DCKVo5V5gOHNAlIaUUpRoFU3oA2gWR0DCWDmI42jxdX2UKGgGaAloD0MIHJdxU8PudUCUhpRSlGgVTegDaBZHQMJcbzF+/g11fZQoaAZoCWgPQwgMycnErZ1wQJSGlFKUaBVN6ANoFkdAwmPnKjBVMnV9lChoBmgJaA9DCAg7xaoB8XJAlIaUUpRoFU3oA2gWR0DCaC0ZP2wndX2UKGgGaAloD0MIAAAAAAAAAACUhpRSlGgVTegDaBZHQMJsecqe9SN1fZQoaAZoCWgPQwg9fQT+MGRwQJSGlFKUaBVN6ANoFkdAwnDFlT3qRnV9lChoBmgJaA9DCFPr/Ub793RAlIaUUpRoFU3oA2gWR0DCdRF5le4TdX2UKGgGaAloD0MIEEHV6FWrcUCUhpRSlGgVTegDaBZHQMJ5W/fO2Rd1fZQoaAZoCWgPQwiC/de5yfmBQJSGlFKUaBVN6ANoFkdAwn2oJE6T4nV9lChoBmgJaA9DCKGEmbb//WVAlIaUUpRoFU3oA2gWR0DCgfdW+49YdX2UKGgGaAloD0MIKgMHtDQZekCUhpRSlGgVTegDaBZHQMKGRIOhCdB1fZQoaAZoCWgPQwhTeNDsujRwQJSGlFKUaBVN6ANoFkdAwoqPxPO6d3V9lChoBmgJaA9DCL6lnC/2H21AlIaUUpRoFU3oA2gWR0DCjtICfYjCdX2UKGgGaAloD0MI4c/wZm04gECUhpRSlGgVTegDaBZHQMKTHlyBCld1fZQoaAZoCWgPQwhF9dbAVp5lQJSGlFKUaBVN6ANoFkdAwpdqt7KJVXV9lChoBmgJaA9DCN44Kcw7lIRAlIaUUpRoFU3oA2gWR0DCm7c/OdGzdX2UKGgGaAloD0MI0ZFc/oOGd0CUhpRSlGgVTegDaBZHQMKgCFTvRZ51fZQoaAZoCWgPQwiVtrjGZ65tQJSGlFKUaBVN6ANoFkdAwqRVHavicXV9lChoBmgJaA9DCG3lJf9TTn9AlIaUUpRoFU3oA2gWR0DCqKA66reZdX2UKGgGaAloD0MIGttrQW9jeECUhpRSlGgVTegDaBZHQMKs62k8A7x1fZQoaAZoCWgPQwhQ4QhSiZmDQJSGlFKUaBVN6ANoFkdAwrE3qWTouHV9lChoBmgJaA9DCAAAAAAAAAAAlIaUUpRoFU3oA2gWR0DCtYVnM+vAdX2UKGgGaAloD0MIg04IHTQbeUCUhpRSlGgVTegDaBZHQMK50HZkCmx1fZQoaAZoCWgPQwg3HJYGftx8QJSGlFKUaBVN6ANoFkdAwr4fbaAWi3V9lChoBmgJaA9DCFUWhV3U6nFAlIaUUpRoFU3oA2gWR0DCwm4J7b+MdX2UKGgGaAloD0MIfdCzWfXWXUCUhpRSlGgVTegDaBZHQMLGufnW8RN1fZQoaAZoCWgPQwh2+kFdZMF7QJSGlFKUaBVN6ANoFkdAwssFFdcB2nV9lChoBmgJaA9DCPda0HsDRYRAlIaUUpRoFU3oA2gWR0DC0oOFzuF6dX2UKGgGaAloD0MI16axvdaogECUhpRSlGgVTegDaBZHQMLW0tdzGPx1fZQoaAZoCWgPQwhINez3RNVrQJSGlFKUaBVN6ANoFkdAwtsd5Sm65HV9lChoBmgJaA9DCK7TSEsll4JAlIaUUpRoFU3oA2gWR0DC31sKPXCkdX2UKGgGaAloD0MIecxAZXwWZkCUhpRSlGgVTegDaBZHQMLjkPxhDw91fZQoaAZoCWgPQwhkJHuEGu5vQJSGlFKUaBVN6ANoFkdAwufZsZYPoXV9lChoBmgJaA9DCOfEHtonXoRAlIaUUpRoFU3oA2gWR0DC7CC7Xg+AdX2UKGgGaAloD0MId0gxQAKegECUhpRSlGgVTegDaBZHQMLwauHvc8F1fZQoaAZoCWgPQwj0TZoGxcVwQJSGlFKUaBVN6ANoFkdAwvS1Y9xIa3V9lChoBmgJaA9DCPD8ogSdKYVAlIaUUpRoFU3oA2gWR0DC+QHEIgNgdX2UKGgGaAloD0MIw0fElMgUdECUhpRSlGgVTegDaBZHQML9R2G7Bft1fZQoaAZoCWgPQwjncK32sPxyQJSGlFKUaBVN6ANoFkdAwwGSRxLkCHV9lChoBmgJaA9DCO/jaI4saWFAlIaUUpRoFU3oA2gWR0DDBcrUoa1kdX2UKGgGaAloD0MIwTkjSpv/hkCUhpRSlGgVTegDaBZHQMMKAe5WilB1fZQoaAZoCWgPQwgi+yDLgo04QJSGlFKUaBVN6ANoFkdAww44Oearm3V9lChoBmgJaA9DCM2SADV1Y3xAlIaUUpRoFU3oA2gWR0DDEm7Wwu/UdX2UKGgGaAloD0MIf05BfrbmZUCUhpRSlGgVTegDaBZHQMMWqLamGdt1fZQoaAZoCWgPQwh8fhghXASHQJSGlFKUaBVN6ANoFkdAwxrla+vhZXV9lChoBmgJaA9DCPKVQErsQnFAlIaUUpRoFU3oA2gWR0DDHx5hnanKdX2UKGgGaAloD0MILUDbatbVb0CUhpRSlGgVTegDaBZHQMMjWKqXF991fZQoaAZoCWgPQwg2PpP9c6JsQJSGlFKUaBVN6ANoFkdAwyeSfCAMD3V9lChoBmgJaA9DCHDNHf2vfGxAlIaUUpRoFU3oA2gWR0DDK8xvrGBGdX2UKGgGaAloD0MIsVBrmrdsdECUhpRSlGgVTegDaBZHQMMwBboSteV1fZQoaAZoCWgPQwjmlICYhMNNQJSGlFKUaBVN6ANoFkdAwzRBO8Cgb3V9lChoBmgJaA9DCGQGKuNf7WZAlIaUUpRoFU3oA2gWR0DDOHphttQ9dWUu"
|
99 |
+
},
|
100 |
+
"ep_success_buffer": {
|
101 |
+
":type:": "<class 'collections.deque'>",
|
102 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
103 |
+
},
|
104 |
+
"_n_updates": 1000000,
|
105 |
+
"buffer_size": 1,
|
106 |
+
"batch_size": 64,
|
107 |
+
"learning_starts": 100,
|
108 |
+
"tau": 0.005,
|
109 |
+
"gamma": 0.99,
|
110 |
+
"gradient_steps": -1,
|
111 |
+
"optimize_memory_usage": false,
|
112 |
+
"replay_buffer_class": {
|
113 |
+
":type:": "<class 'abc.ABCMeta'>",
|
114 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
115 |
+
"__module__": "stable_baselines3.common.buffers",
|
116 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
117 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x122696dd0>",
|
118 |
+
"add": "<function ReplayBuffer.add at 0x122696e60>",
|
119 |
+
"sample": "<function ReplayBuffer.sample at 0x122696ef0>",
|
120 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x122696f80>",
|
121 |
+
"__abstractmethods__": "frozenset()",
|
122 |
+
"_abc_impl": "<_abc._abc_data object at 0x122635cc0>"
|
123 |
+
},
|
124 |
+
"replay_buffer_kwargs": {},
|
125 |
+
"train_freq": {
|
126 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
127 |
+
":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
|
128 |
+
},
|
129 |
+
"use_sde_at_warmup": false,
|
130 |
+
"policy_delay": 1,
|
131 |
+
"target_noise_clip": 0.0,
|
132 |
+
"target_policy_noise": 0.1,
|
133 |
+
"actor_batch_norm_stats": [],
|
134 |
+
"critic_batch_norm_stats": [],
|
135 |
+
"actor_batch_norm_stats_target": [],
|
136 |
+
"critic_batch_norm_stats_target": []
|
137 |
+
}
|
ddpg-HopperStandDMC-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d8a6265f728f7da3447e3dbd90e96d9b5dbddc0a8aab8fcc30f6c73435b4202
|
3 |
+
size 1562973
|
ddpg-HopperStandDMC-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ddpg-HopperStandDMC-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: macOS-13.0.1-arm64-arm-64bit Darwin Kernel Version 22.1.0: Sun Oct 9 20:14:30 PDT 2022; root:xnu-8792.41.9~2/RELEASE_ARM64_T8103
|
2 |
+
- Python: 3.10.9
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:914f1570dc0bc45e8ab74ecd74ee19115922f19aed4cecf2bb406aa11d26273e
|
3 |
+
size 139793
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 816.1748073000001, "std_reward": 50.67000580181987, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-16T09:00:53.547713"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a6d00ea0cfd984deec365b07db1eca64e2408ee89d4fc2bcb0faa2ad689c060
|
3 |
+
size 41051
|