zhengxuanzenwu commited on
Commit
b9662e5
·
verified ·
1 Parent(s): e79540b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -3
README.md CHANGED
@@ -1,3 +1,49 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ ---
4
+
5
+ # Finetuned `Gemma-2-2B` for generating subspaces given any natural language descriptions for `Gemma-2-9B-it`
6
+
7
+ In the AxBench paper, we finetuned a subspace generator. The subspace generator is a hyper-network that will generate a subspace for you given a concept description in natural language. **High-quality subspace generator can bypass all dictionary training!**
8
+
9
+ ## How to use the subspace generator?
10
+
11
+ ```py
12
+ import torch
13
+ import torch.nn.functional as F
14
+ from transformers import AutoModelForCausalLM, AutoTokenizer
15
+
16
+ class RegressionWrapper(torch.nn.Module):
17
+ def __init__(self, base_model, hidden_size, output_dim):
18
+ super().__init__()
19
+ self.base_model = base_model
20
+ self.regression_head = torch.nn.Linear(hidden_size, output_dim)
21
+
22
+ def forward(self, input_ids, attention_mask):
23
+ outputs = self.base_model.model(
24
+ input_ids=input_ids,
25
+ attention_mask=attention_mask,
26
+ output_hidden_states=True,
27
+ return_dict=True
28
+ )
29
+ last_hiddens = outputs.hidden_states[-1]
30
+ last_token_representations = last_hiddens[:, -1]
31
+ preds = self.regression_head(last_token_representations)
32
+ preds = F.normalize(preds, p=2, dim=-1)
33
+ return preds
34
+
35
+ base_model = AutoModelForCausalLM.from_pretrained(
36
+ f"google/gemma-2-2b", torch_dtype=torch.bfloat16)
37
+ base_tokenizer = AutoTokenizer.from_pretrained(
38
+ f"google/gemma-2-2b", model_max_length=512)
39
+
40
+ subspace_gen = RegressionWrapper(
41
+ base_model, hidden_size, output_dim).bfloat16().to("cuda")
42
+ subspace_gen.load_state_dict(torch.load('model.pth'))
43
+
44
+ your_new_concept = "terms related to Stanford University"
45
+
46
+ inputs = base_tokenizer(your_new_concept, return_tensors="pt").to("cuda")
47
+ input_ids, attention_mask = inputs["input_ids"], inputs["attention_mask"]
48
+ subspace_gen(input_ids, attention_mask)[0]
49
+ ```