zhengxuanzenwu
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,49 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-4.0
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
---
|
4 |
+
|
5 |
+
# Finetuned `Gemma-2-2B` for generating subspaces given any natural language descriptions for `Gemma-2-9B-it`
|
6 |
+
|
7 |
+
In the AxBench paper, we finetuned a subspace generator. The subspace generator is a hyper-network that will generate a subspace for you given a concept description in natural language. **High-quality subspace generator can bypass all dictionary training!**
|
8 |
+
|
9 |
+
## How to use the subspace generator?
|
10 |
+
|
11 |
+
```py
|
12 |
+
import torch
|
13 |
+
import torch.nn.functional as F
|
14 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
15 |
+
|
16 |
+
class RegressionWrapper(torch.nn.Module):
|
17 |
+
def __init__(self, base_model, hidden_size, output_dim):
|
18 |
+
super().__init__()
|
19 |
+
self.base_model = base_model
|
20 |
+
self.regression_head = torch.nn.Linear(hidden_size, output_dim)
|
21 |
+
|
22 |
+
def forward(self, input_ids, attention_mask):
|
23 |
+
outputs = self.base_model.model(
|
24 |
+
input_ids=input_ids,
|
25 |
+
attention_mask=attention_mask,
|
26 |
+
output_hidden_states=True,
|
27 |
+
return_dict=True
|
28 |
+
)
|
29 |
+
last_hiddens = outputs.hidden_states[-1]
|
30 |
+
last_token_representations = last_hiddens[:, -1]
|
31 |
+
preds = self.regression_head(last_token_representations)
|
32 |
+
preds = F.normalize(preds, p=2, dim=-1)
|
33 |
+
return preds
|
34 |
+
|
35 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
36 |
+
f"google/gemma-2-2b", torch_dtype=torch.bfloat16)
|
37 |
+
base_tokenizer = AutoTokenizer.from_pretrained(
|
38 |
+
f"google/gemma-2-2b", model_max_length=512)
|
39 |
+
|
40 |
+
subspace_gen = RegressionWrapper(
|
41 |
+
base_model, hidden_size, output_dim).bfloat16().to("cuda")
|
42 |
+
subspace_gen.load_state_dict(torch.load('model.pth'))
|
43 |
+
|
44 |
+
your_new_concept = "terms related to Stanford University"
|
45 |
+
|
46 |
+
inputs = base_tokenizer(your_new_concept, return_tensors="pt").to("cuda")
|
47 |
+
input_ids, attention_mask = inputs["input_ids"], inputs["attention_mask"]
|
48 |
+
subspace_gen(input_ids, attention_mask)[0]
|
49 |
+
```
|