--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: distilbert/distilbert-base-uncased metrics: - accuracy model-index: - name: distilbert-base-uncased-lora-text-classification results: [] --- # distilbert-base-uncased-lora-text-classification This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3129 - Accuracy: {'accuracy': 0.86} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------------:| | No log | 1.0 | 250 | 0.4795 | {'accuracy': 0.85} | | 0.4131 | 2.0 | 500 | 0.6526 | {'accuracy': 0.851} | | 0.4131 | 3.0 | 750 | 0.6766 | {'accuracy': 0.854} | | 0.2017 | 4.0 | 1000 | 0.9597 | {'accuracy': 0.855} | | 0.2017 | 5.0 | 1250 | 0.9623 | {'accuracy': 0.857} | | 0.1102 | 6.0 | 1500 | 0.9842 | {'accuracy': 0.866} | | 0.1102 | 7.0 | 1750 | 1.1943 | {'accuracy': 0.859} | | 0.023 | 8.0 | 2000 | 1.2874 | {'accuracy': 0.859} | | 0.023 | 9.0 | 2250 | 1.3154 | {'accuracy': 0.859} | | 0.0047 | 10.0 | 2500 | 1.3129 | {'accuracy': 0.86} | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1