File size: 7,671 Bytes
e435cd8 7c5e334 3ef8f15 603ad1f 3ef8f15 603ad1f 3ef8f15 603ad1f 3ef8f15 603ad1f 3ef8f15 603ad1f 3ef8f15 603ad1f 3ef8f15 30b260b c70674c 5e2b829 c70674c 3ef8f15 603ad1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
---
license: apache-2.0
language:
- en
base_model:
- prithivMLmods/Calcium-Opus-14B-Elite2
pipeline_tag: text-generation
library_name: transformers
tags:
- SFT
- Opus
- R1
- trl
model-index:
- name: Calcium-Opus-14B-Elite2-R1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 63.26
name: averaged accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite2-R1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 47.34
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite2-R1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 29.83
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite2-R1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 18.79
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite2-R1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 21.42
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite2-R1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 47.2
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FCalcium-Opus-14B-Elite2-R1
name: Open LLM Leaderboard
---
![r1.gif](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/iHEhTX2ZGk9wmBMIcueTf.gif)
# **Calcium-Opus-14B-Elite2-R1**
Calcium-Opus-14B-Elite2-R1 is based on the Qwen 2.5 14B modality architecture, designed to enhance the reasoning capabilities of 14B-parameter models. It has been fine-tuned on a **synthetic dataset based on DeepSeek R1**, further optimizing its chain-of-thought (CoT) reasoning and logical problem-solving abilities. The model demonstrates significant improvements in context understanding, structured data processing, and long-context comprehension, making it ideal for complex reasoning tasks, instruction-following, and text generation.
### **Key Improvements**
1. **Enhanced Knowledge and Expertise**: Improved mathematical reasoning, coding proficiency, and structured data processing.
2. **Fine-Tuned Instruction Following**: Optimized for precise responses, structured outputs (e.g., JSON), and generating long texts (8K+ tokens).
3. **Greater Adaptability**: Better role-playing capabilities and resilience to diverse system prompts.
4. **Long-Context Support**: Handles up to **128K tokens** and generates up to **8K tokens** per output.
5. **Multilingual Proficiency**: Supports over **29 languages**, including Chinese, English, French, Spanish, Portuguese, German, and more.
### **Quickstart with Transformers**
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "prithivMLmods/Calcium-Opus-14B-Elite2-R1"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language models."
messages = [
{"role": "system", "content": "You are an advanced AI assistant with expert-level reasoning and knowledge."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
### **Intended Use**
- **Advanced Reasoning & Context Understanding**: Designed for logical deduction, multi-step problem-solving, and complex knowledge-based tasks.
- **Mathematical & Scientific Problem-Solving**: Enhanced capabilities for calculations, theorem proving, and scientific queries.
- **Code Generation & Debugging**: Generates and optimizes code across multiple programming languages.
- **Structured Data Analysis**: Processes tables, JSON, and structured outputs, making it ideal for data-centric tasks.
- **Multilingual Applications**: High proficiency in over 29 languages, enabling global-scale applications.
- **Extended Content Generation**: Supports detailed document writing, research reports, and instructional guides.
### **Limitations**
1. **High Computational Requirements**: Due to its **14B parameters** and **128K context support**, it requires powerful GPUs or TPUs for efficient inference.
2. **Language-Specific Variability**: Performance may vary across supported languages, especially for low-resource languages.
3. **Potential Error Accumulation**: Long-text generation can sometimes introduce inconsistencies over extended outputs.
4. **Limited Real-World Awareness**: Knowledge is restricted to training data and may not reflect recent world events.
5. **Prompt Sensitivity**: Outputs can depend on the specificity and clarity of the input prompt.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/prithivMLmods__Calcium-Opus-14B-Elite2-R1-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FCalcium-Opus-14B-Elite2-R1&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
| Metric |Value (%)|
|-------------------|--------:|
|**Average** | 37.97|
|IFEval (0-Shot) | 63.26|
|BBH (3-Shot) | 47.34|
|MATH Lvl 5 (4-Shot)| 29.83|
|GPQA (0-shot) | 18.79|
|MuSR (0-shot) | 21.42|
|MMLU-PRO (5-shot) | 47.20| |