--- library_name: peft license: mit base_model: deepseek-ai/DeepSeek-R1-Distill-Llama-8B tags: - generated_from_trainer datasets: - scitldr model-index: - name: DeepSeek-R1-Distill-Llama-8B-Summarization-QLoRa results: [] pipeline_tag: summarization --- # DeepSeek-R1-Distill-Llama-8B-Summarization-QLoRa This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Llama-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B) on the scitldr dataset. It achieves the following results on the evaluation set: - Loss: 2.5393 ## Model description DeepSeek-R1-Distill-Llama-8B fine-tuned for summarization of scientific documents ## Intended uses & limitations Summarization ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use OptimizerNames.PAGED_ADAMW with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.459 | 0.2209 | 220 | 2.4903 | | 2.3971 | 0.4418 | 440 | 2.4720 | | 2.3821 | 0.6627 | 660 | 2.4550 | | 2.3665 | 0.8835 | 880 | 2.4392 | | 2.3582 | 1.1044 | 1100 | 2.5203 | | 1.7824 | 1.3253 | 1320 | 2.5360 | | 1.7599 | 1.5462 | 1540 | 2.5486 | | 1.7352 | 1.7671 | 1760 | 2.5404 | | 1.7088 | 1.9880 | 1980 | 2.5393 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0