---
license: mit
library_name: sklearn
tags:
- classification
- phishing
---
# Model description
## Training Procedure
### Hyperparameters
Click to expand
| Hyperparameter | Value |
|-------------------------------------------------------------|--------------------------|
| memory | |
| steps | [('standardscaler', StandardScaler()), ('calibratedclassifiercv', CalibratedClassifierCV(cv=5, estimator=RandomForestClassifier(),
method='isotonic'))] |
| verbose | False |
| standardscaler | StandardScaler() |
| calibratedclassifiercv | CalibratedClassifierCV(cv=5, estimator=RandomForestClassifier(),
method='isotonic') |
| standardscaler__copy | True |
| standardscaler__with_mean | True |
| standardscaler__with_std | True |
| calibratedclassifiercv__base_estimator | deprecated |
| calibratedclassifiercv__cv | 5 |
| calibratedclassifiercv__ensemble | True |
| calibratedclassifiercv__estimator__bootstrap | True |
| calibratedclassifiercv__estimator__ccp_alpha | 0.0 |
| calibratedclassifiercv__estimator__class_weight | |
| calibratedclassifiercv__estimator__criterion | gini |
| calibratedclassifiercv__estimator__max_depth | |
| calibratedclassifiercv__estimator__max_features | sqrt |
| calibratedclassifiercv__estimator__max_leaf_nodes | |
| calibratedclassifiercv__estimator__max_samples | |
| calibratedclassifiercv__estimator__min_impurity_decrease | 0.0 |
| calibratedclassifiercv__estimator__min_samples_leaf | 1 |
| calibratedclassifiercv__estimator__min_samples_split | 2 |
| calibratedclassifiercv__estimator__min_weight_fraction_leaf | 0.0 |
| calibratedclassifiercv__estimator__n_estimators | 100 |
| calibratedclassifiercv__estimator__n_jobs | |
| calibratedclassifiercv__estimator__oob_score | False |
| calibratedclassifiercv__estimator__random_state | |
| calibratedclassifiercv__estimator__verbose | 0 |
| calibratedclassifiercv__estimator__warm_start | False |
| calibratedclassifiercv__estimator | RandomForestClassifier() |
| calibratedclassifiercv__method | isotonic |
| calibratedclassifiercv__n_jobs | |
Pipeline(steps=[('standardscaler', StandardScaler()),('calibratedclassifiercv',CalibratedClassifierCV(cv=5,estimator=RandomForestClassifier(),method='isotonic'))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('standardscaler', StandardScaler()),('calibratedclassifiercv',CalibratedClassifierCV(cv=5,estimator=RandomForestClassifier(),method='isotonic'))])
StandardScaler()
CalibratedClassifierCV(cv=5, estimator=RandomForestClassifier(),method='isotonic')
RandomForestClassifier()
RandomForestClassifier()