|
""" This file is adapted from https://github.com/thuyngch/Human-Segmentation-PyTorch""" |
|
|
|
import math |
|
import json |
|
from functools import reduce |
|
|
|
import torch |
|
from torch import nn |
|
|
|
|
|
|
|
|
|
|
|
|
|
def _make_divisible(v, divisor, min_value=None): |
|
if min_value is None: |
|
min_value = divisor |
|
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) |
|
|
|
if new_v < 0.9 * v: |
|
new_v += divisor |
|
return new_v |
|
|
|
|
|
def conv_bn(inp, oup, stride): |
|
return nn.Sequential( |
|
nn.Conv2d(inp, oup, 3, stride, 1, bias=False), |
|
nn.BatchNorm2d(oup), |
|
nn.ReLU6(inplace=True) |
|
) |
|
|
|
|
|
def conv_1x1_bn(inp, oup): |
|
return nn.Sequential( |
|
nn.Conv2d(inp, oup, 1, 1, 0, bias=False), |
|
nn.BatchNorm2d(oup), |
|
nn.ReLU6(inplace=True) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
class InvertedResidual(nn.Module): |
|
def __init__(self, inp, oup, stride, expansion, dilation=1): |
|
super(InvertedResidual, self).__init__() |
|
self.stride = stride |
|
assert stride in [1, 2] |
|
|
|
hidden_dim = round(inp * expansion) |
|
self.use_res_connect = self.stride == 1 and inp == oup |
|
|
|
if expansion == 1: |
|
self.conv = nn.Sequential( |
|
|
|
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, dilation=dilation, bias=False), |
|
nn.BatchNorm2d(hidden_dim), |
|
nn.ReLU6(inplace=True), |
|
|
|
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), |
|
nn.BatchNorm2d(oup), |
|
) |
|
else: |
|
self.conv = nn.Sequential( |
|
|
|
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), |
|
nn.BatchNorm2d(hidden_dim), |
|
nn.ReLU6(inplace=True), |
|
|
|
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, dilation=dilation, bias=False), |
|
nn.BatchNorm2d(hidden_dim), |
|
nn.ReLU6(inplace=True), |
|
|
|
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), |
|
nn.BatchNorm2d(oup), |
|
) |
|
|
|
def forward(self, x): |
|
if self.use_res_connect: |
|
return x + self.conv(x) |
|
else: |
|
return self.conv(x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
class MobileNetV2(nn.Module): |
|
def __init__(self, in_channels, alpha=1.0, expansion=6, num_classes=1000): |
|
super(MobileNetV2, self).__init__() |
|
self.in_channels = in_channels |
|
self.num_classes = num_classes |
|
input_channel = 32 |
|
last_channel = 1280 |
|
interverted_residual_setting = [ |
|
|
|
[1 , 16, 1, 1], |
|
[expansion, 24, 2, 2], |
|
[expansion, 32, 3, 2], |
|
[expansion, 64, 4, 2], |
|
[expansion, 96, 3, 1], |
|
[expansion, 160, 3, 2], |
|
[expansion, 320, 1, 1], |
|
] |
|
|
|
|
|
input_channel = _make_divisible(input_channel*alpha, 8) |
|
self.last_channel = _make_divisible(last_channel*alpha, 8) if alpha > 1.0 else last_channel |
|
self.features = [conv_bn(self.in_channels, input_channel, 2)] |
|
|
|
|
|
for t, c, n, s in interverted_residual_setting: |
|
output_channel = _make_divisible(int(c*alpha), 8) |
|
for i in range(n): |
|
if i == 0: |
|
self.features.append(InvertedResidual(input_channel, output_channel, s, expansion=t)) |
|
else: |
|
self.features.append(InvertedResidual(input_channel, output_channel, 1, expansion=t)) |
|
input_channel = output_channel |
|
|
|
|
|
self.features.append(conv_1x1_bn(input_channel, self.last_channel)) |
|
|
|
|
|
self.features = nn.Sequential(*self.features) |
|
|
|
|
|
if self.num_classes is not None: |
|
self.classifier = nn.Sequential( |
|
nn.Dropout(0.2), |
|
nn.Linear(self.last_channel, num_classes), |
|
) |
|
|
|
|
|
self._init_weights() |
|
|
|
def forward(self, x): |
|
|
|
x = self.features[0](x) |
|
x = self.features[1](x) |
|
|
|
x = self.features[2](x) |
|
x = self.features[3](x) |
|
|
|
x = self.features[4](x) |
|
x = self.features[5](x) |
|
x = self.features[6](x) |
|
|
|
x = self.features[7](x) |
|
x = self.features[8](x) |
|
x = self.features[9](x) |
|
x = self.features[10](x) |
|
x = self.features[11](x) |
|
x = self.features[12](x) |
|
x = self.features[13](x) |
|
|
|
x = self.features[14](x) |
|
x = self.features[15](x) |
|
x = self.features[16](x) |
|
x = self.features[17](x) |
|
x = self.features[18](x) |
|
|
|
|
|
if self.num_classes is not None: |
|
x = x.mean(dim=(2,3)) |
|
x = self.classifier(x) |
|
|
|
|
|
return x |
|
|
|
def _load_pretrained_model(self, pretrained_file): |
|
pretrain_dict = torch.load(pretrained_file, map_location='cpu') |
|
model_dict = {} |
|
state_dict = self.state_dict() |
|
print("[MobileNetV2] Loading pretrained model...") |
|
for k, v in pretrain_dict.items(): |
|
if k in state_dict: |
|
model_dict[k] = v |
|
else: |
|
print(k, "is ignored") |
|
state_dict.update(model_dict) |
|
self.load_state_dict(state_dict) |
|
|
|
def _init_weights(self): |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
m.weight.data.normal_(0, math.sqrt(2. / n)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
elif isinstance(m, nn.BatchNorm2d): |
|
m.weight.data.fill_(1) |
|
m.bias.data.zero_() |
|
elif isinstance(m, nn.Linear): |
|
n = m.weight.size(1) |
|
m.weight.data.normal_(0, 0.01) |
|
m.bias.data.zero_() |
|
|