Papers
arxiv:1503.02531

Distilling the Knowledge in a Neural Network

Published on Mar 9, 2015
Authors:
,
,

Abstract

A very simple way to improve the performance of almost any machine learning algorithm is to train many different models on the same data and then to average their predictions. Unfortunately, making predictions using a whole ensemble of models is cumbersome and may be too computationally expensive to allow deployment to a large number of users, especially if the individual models are large neural nets. Caruana and his collaborators have shown that it is possible to compress the knowledge in an ensemble into a single model which is much easier to deploy and we develop this approach further using a different compression technique. We achieve some surprising results on MNIST and we show that we can significantly improve the acoustic model of a heavily used commercial system by distilling the knowledge in an ensemble of models into a single model. We also introduce a new type of ensemble composed of one or more full models and many specialist models which learn to distinguish fine-grained classes that the full models confuse. Unlike a mixture of experts, these specialist models can be trained rapidly and in parallel.

Community

Sign up or log in to comment

Models citing this paper 17

Browse 17 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/1503.02531 in a dataset README.md to link it from this page.

Spaces citing this paper 357

Collections including this paper 1