Delete controlnet.py
Browse files- controlnet.py +0 -1121
controlnet.py
DELETED
@@ -1,1121 +0,0 @@
|
|
1 |
-
import gc
|
2 |
-
import os
|
3 |
-
import logging
|
4 |
-
import re
|
5 |
-
from collections import OrderedDict
|
6 |
-
from copy import copy
|
7 |
-
from typing import Dict, Optional, Tuple
|
8 |
-
import modules.scripts as scripts
|
9 |
-
from modules import shared, devices, script_callbacks, processing, masking, images
|
10 |
-
import gradio as gr
|
11 |
-
import time
|
12 |
-
|
13 |
-
|
14 |
-
from einops import rearrange
|
15 |
-
from scripts import global_state, hook, external_code, processor, batch_hijack, controlnet_version, utils
|
16 |
-
from scripts.controlnet_lora import bind_control_lora, unbind_control_lora
|
17 |
-
from scripts.processor import *
|
18 |
-
from scripts.adapter import Adapter, StyleAdapter, Adapter_light
|
19 |
-
from scripts.controlnet_lllite import PlugableControlLLLite, clear_all_lllite
|
20 |
-
from scripts.controlmodel_ipadapter import PlugableIPAdapter, clear_all_ip_adapter
|
21 |
-
from scripts.utils import load_state_dict, get_unique_axis0
|
22 |
-
from scripts.hook import ControlParams, UnetHook, ControlModelType, HackedImageRNG
|
23 |
-
from scripts.controlnet_ui.controlnet_ui_group import ControlNetUiGroup, UiControlNetUnit
|
24 |
-
from scripts.logging import logger
|
25 |
-
from modules.processing import StableDiffusionProcessingImg2Img, StableDiffusionProcessingTxt2Img
|
26 |
-
from modules.images import save_image
|
27 |
-
from scripts.infotext import Infotext
|
28 |
-
|
29 |
-
import cv2
|
30 |
-
import numpy as np
|
31 |
-
import torch
|
32 |
-
|
33 |
-
from pathlib import Path
|
34 |
-
from PIL import Image, ImageFilter, ImageOps
|
35 |
-
from scripts.lvminthin import lvmin_thin, nake_nms
|
36 |
-
from scripts.processor import model_free_preprocessors
|
37 |
-
from scripts.controlnet_model_guess import build_model_by_guess
|
38 |
-
|
39 |
-
|
40 |
-
gradio_compat = True
|
41 |
-
try:
|
42 |
-
from distutils.version import LooseVersion
|
43 |
-
from importlib_metadata import version
|
44 |
-
if LooseVersion(version("gradio")) < LooseVersion("3.10"):
|
45 |
-
gradio_compat = False
|
46 |
-
except ImportError:
|
47 |
-
pass
|
48 |
-
|
49 |
-
|
50 |
-
# Gradio 3.32 bug fix
|
51 |
-
import tempfile
|
52 |
-
gradio_tempfile_path = os.path.join(tempfile.gettempdir(), 'gradio')
|
53 |
-
os.makedirs(gradio_tempfile_path, exist_ok=True)
|
54 |
-
|
55 |
-
|
56 |
-
def clear_all_secondary_control_models():
|
57 |
-
clear_all_lllite()
|
58 |
-
clear_all_ip_adapter()
|
59 |
-
|
60 |
-
|
61 |
-
def find_closest_lora_model_name(search: str):
|
62 |
-
if not search:
|
63 |
-
return None
|
64 |
-
if search in global_state.cn_models:
|
65 |
-
return search
|
66 |
-
search = search.lower()
|
67 |
-
if search in global_state.cn_models_names:
|
68 |
-
return global_state.cn_models_names.get(search)
|
69 |
-
applicable = [name for name in global_state.cn_models_names.keys()
|
70 |
-
if search in name.lower()]
|
71 |
-
if not applicable:
|
72 |
-
return None
|
73 |
-
applicable = sorted(applicable, key=lambda name: len(name))
|
74 |
-
return global_state.cn_models_names[applicable[0]]
|
75 |
-
|
76 |
-
|
77 |
-
def swap_img2img_pipeline(p: processing.StableDiffusionProcessingImg2Img):
|
78 |
-
p.__class__ = processing.StableDiffusionProcessingTxt2Img
|
79 |
-
dummy = processing.StableDiffusionProcessingTxt2Img()
|
80 |
-
for k,v in dummy.__dict__.items():
|
81 |
-
if hasattr(p, k):
|
82 |
-
continue
|
83 |
-
setattr(p, k, v)
|
84 |
-
|
85 |
-
|
86 |
-
global_state.update_cn_models()
|
87 |
-
|
88 |
-
|
89 |
-
def image_dict_from_any(image) -> Optional[Dict[str, np.ndarray]]:
|
90 |
-
if image is None:
|
91 |
-
return None
|
92 |
-
|
93 |
-
if isinstance(image, (tuple, list)):
|
94 |
-
image = {'image': image[0], 'mask': image[1]}
|
95 |
-
elif not isinstance(image, dict):
|
96 |
-
image = {'image': image, 'mask': None}
|
97 |
-
else: # type(image) is dict
|
98 |
-
# copy to enable modifying the dict and prevent response serialization error
|
99 |
-
image = dict(image)
|
100 |
-
|
101 |
-
if isinstance(image['image'], str):
|
102 |
-
if os.path.exists(image['image']):
|
103 |
-
image['image'] = np.array(Image.open(image['image'])).astype('uint8')
|
104 |
-
elif image['image']:
|
105 |
-
image['image'] = external_code.to_base64_nparray(image['image'])
|
106 |
-
else:
|
107 |
-
image['image'] = None
|
108 |
-
|
109 |
-
# If there is no image, return image with None image and None mask
|
110 |
-
if image['image'] is None:
|
111 |
-
image['mask'] = None
|
112 |
-
return image
|
113 |
-
|
114 |
-
if isinstance(image['mask'], str):
|
115 |
-
if os.path.exists(image['mask']):
|
116 |
-
image['mask'] = np.array(Image.open(image['mask'])).astype('uint8')
|
117 |
-
elif image['mask']:
|
118 |
-
image['mask'] = external_code.to_base64_nparray(image['mask'])
|
119 |
-
else:
|
120 |
-
image['mask'] = np.zeros_like(image['image'], dtype=np.uint8)
|
121 |
-
elif image['mask'] is None:
|
122 |
-
image['mask'] = np.zeros_like(image['image'], dtype=np.uint8)
|
123 |
-
|
124 |
-
return image
|
125 |
-
|
126 |
-
|
127 |
-
def image_has_mask(input_image: np.ndarray) -> bool:
|
128 |
-
"""
|
129 |
-
Determine if an image has an alpha channel (mask) that is not empty.
|
130 |
-
|
131 |
-
The function checks if the input image has three dimensions (height, width, channels),
|
132 |
-
and if the third dimension (channel dimension) is of size 4 (presumably RGB + alpha).
|
133 |
-
Then it checks if the maximum value in the alpha channel is greater than 127. This is
|
134 |
-
presumably to check if there is any non-transparent (or semi-transparent) pixel in the
|
135 |
-
image. A pixel is considered non-transparent if its alpha value is above 127.
|
136 |
-
|
137 |
-
Args:
|
138 |
-
input_image (np.ndarray): A 3D numpy array representing an image. The dimensions
|
139 |
-
should represent [height, width, channels].
|
140 |
-
|
141 |
-
Returns:
|
142 |
-
bool: True if the image has a non-empty alpha channel, False otherwise.
|
143 |
-
"""
|
144 |
-
return (
|
145 |
-
input_image.ndim == 3 and
|
146 |
-
input_image.shape[2] == 4 and
|
147 |
-
np.max(input_image[:, :, 3]) > 127
|
148 |
-
)
|
149 |
-
|
150 |
-
|
151 |
-
def prepare_mask(
|
152 |
-
mask: Image.Image, p: processing.StableDiffusionProcessing
|
153 |
-
) -> Image.Image:
|
154 |
-
"""
|
155 |
-
Prepare an image mask for the inpainting process.
|
156 |
-
|
157 |
-
This function takes as input a PIL Image object and an instance of the
|
158 |
-
StableDiffusionProcessing class, and performs the following steps to prepare the mask:
|
159 |
-
|
160 |
-
1. Convert the mask to grayscale (mode "L").
|
161 |
-
2. If the 'inpainting_mask_invert' attribute of the processing instance is True,
|
162 |
-
invert the mask colors.
|
163 |
-
3. If the 'mask_blur' attribute of the processing instance is greater than 0,
|
164 |
-
apply a Gaussian blur to the mask with a radius equal to 'mask_blur'.
|
165 |
-
|
166 |
-
Args:
|
167 |
-
mask (Image.Image): The input mask as a PIL Image object.
|
168 |
-
p (processing.StableDiffusionProcessing): An instance of the StableDiffusionProcessing class
|
169 |
-
containing the processing parameters.
|
170 |
-
|
171 |
-
Returns:
|
172 |
-
mask (Image.Image): The prepared mask as a PIL Image object.
|
173 |
-
"""
|
174 |
-
mask = mask.convert("L")
|
175 |
-
if getattr(p, "inpainting_mask_invert", False):
|
176 |
-
mask = ImageOps.invert(mask)
|
177 |
-
|
178 |
-
if hasattr(p, 'mask_blur_x'):
|
179 |
-
if getattr(p, "mask_blur_x", 0) > 0:
|
180 |
-
np_mask = np.array(mask)
|
181 |
-
kernel_size = 2 * int(2.5 * p.mask_blur_x + 0.5) + 1
|
182 |
-
np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), p.mask_blur_x)
|
183 |
-
mask = Image.fromarray(np_mask)
|
184 |
-
if getattr(p, "mask_blur_y", 0) > 0:
|
185 |
-
np_mask = np.array(mask)
|
186 |
-
kernel_size = 2 * int(2.5 * p.mask_blur_y + 0.5) + 1
|
187 |
-
np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), p.mask_blur_y)
|
188 |
-
mask = Image.fromarray(np_mask)
|
189 |
-
else:
|
190 |
-
if getattr(p, "mask_blur", 0) > 0:
|
191 |
-
mask = mask.filter(ImageFilter.GaussianBlur(p.mask_blur))
|
192 |
-
|
193 |
-
return mask
|
194 |
-
|
195 |
-
|
196 |
-
def set_numpy_seed(p: processing.StableDiffusionProcessing) -> Optional[int]:
|
197 |
-
"""
|
198 |
-
Set the random seed for NumPy based on the provided parameters.
|
199 |
-
|
200 |
-
Args:
|
201 |
-
p (processing.StableDiffusionProcessing): The instance of the StableDiffusionProcessing class.
|
202 |
-
|
203 |
-
Returns:
|
204 |
-
Optional[int]: The computed random seed if successful, or None if an exception occurs.
|
205 |
-
|
206 |
-
This function sets the random seed for NumPy using the seed and subseed values from the given instance of
|
207 |
-
StableDiffusionProcessing. If either seed or subseed is -1, it uses the first value from `all_seeds`.
|
208 |
-
Otherwise, it takes the maximum of the provided seed value and 0.
|
209 |
-
|
210 |
-
The final random seed is computed by adding the seed and subseed values, applying a bitwise AND operation
|
211 |
-
with 0xFFFFFFFF to ensure it fits within a 32-bit integer.
|
212 |
-
"""
|
213 |
-
try:
|
214 |
-
tmp_seed = int(p.all_seeds[0] if p.seed == -1 else max(int(p.seed), 0))
|
215 |
-
tmp_subseed = int(p.all_seeds[0] if p.subseed == -1 else max(int(p.subseed), 0))
|
216 |
-
seed = (tmp_seed + tmp_subseed) & 0xFFFFFFFF
|
217 |
-
np.random.seed(seed)
|
218 |
-
return seed
|
219 |
-
except Exception as e:
|
220 |
-
logger.warning(e)
|
221 |
-
logger.warning('Warning: Failed to use consistent random seed.')
|
222 |
-
return None
|
223 |
-
|
224 |
-
|
225 |
-
class Script(scripts.Script, metaclass=(
|
226 |
-
utils.TimeMeta if logger.level == logging.DEBUG else type)):
|
227 |
-
|
228 |
-
model_cache = OrderedDict()
|
229 |
-
|
230 |
-
def __init__(self) -> None:
|
231 |
-
super().__init__()
|
232 |
-
self.latest_network = None
|
233 |
-
self.preprocessor = global_state.cache_preprocessors(global_state.cn_preprocessor_modules)
|
234 |
-
self.unloadable = global_state.cn_preprocessor_unloadable
|
235 |
-
self.input_image = None
|
236 |
-
self.latest_model_hash = ""
|
237 |
-
self.enabled_units = []
|
238 |
-
self.detected_map = []
|
239 |
-
self.post_processors = []
|
240 |
-
self.noise_modifier = None
|
241 |
-
batch_hijack.instance.process_batch_callbacks.append(self.batch_tab_process)
|
242 |
-
batch_hijack.instance.process_batch_each_callbacks.append(self.batch_tab_process_each)
|
243 |
-
batch_hijack.instance.postprocess_batch_each_callbacks.insert(0, self.batch_tab_postprocess_each)
|
244 |
-
batch_hijack.instance.postprocess_batch_callbacks.insert(0, self.batch_tab_postprocess)
|
245 |
-
|
246 |
-
def title(self):
|
247 |
-
return "ControlNet"
|
248 |
-
|
249 |
-
def show(self, is_img2img):
|
250 |
-
return scripts.AlwaysVisible
|
251 |
-
|
252 |
-
@staticmethod
|
253 |
-
def get_default_ui_unit(is_ui=True):
|
254 |
-
cls = UiControlNetUnit if is_ui else external_code.ControlNetUnit
|
255 |
-
return cls(
|
256 |
-
enabled=False,
|
257 |
-
module="none",
|
258 |
-
model="None"
|
259 |
-
)
|
260 |
-
|
261 |
-
def uigroup(self, tabname: str, is_img2img: bool, elem_id_tabname: str) -> Tuple[ControlNetUiGroup, gr.State]:
|
262 |
-
group = ControlNetUiGroup(
|
263 |
-
gradio_compat,
|
264 |
-
Script.get_default_ui_unit(),
|
265 |
-
self.preprocessor,
|
266 |
-
)
|
267 |
-
group.render(tabname, elem_id_tabname, is_img2img)
|
268 |
-
group.register_callbacks(is_img2img)
|
269 |
-
return group, group.render_and_register_unit(tabname, is_img2img)
|
270 |
-
|
271 |
-
def ui(self, is_img2img):
|
272 |
-
"""this function should create gradio UI elements. See https://gradio.app/docs/#components
|
273 |
-
The return value should be an array of all components that are used in processing.
|
274 |
-
Values of those returned components will be passed to run() and process() functions.
|
275 |
-
"""
|
276 |
-
infotext = Infotext()
|
277 |
-
|
278 |
-
controls = ()
|
279 |
-
max_models = shared.opts.data.get("control_net_unit_count", 3)
|
280 |
-
elem_id_tabname = ("img2img" if is_img2img else "txt2img") + "_controlnet"
|
281 |
-
with gr.Group(elem_id=elem_id_tabname):
|
282 |
-
with gr.Accordion(f"ControlNet {controlnet_version.version_flag}", open = False, elem_id="controlnet"):
|
283 |
-
if max_models > 1:
|
284 |
-
with gr.Tabs(elem_id=f"{elem_id_tabname}_tabs"):
|
285 |
-
for i in range(max_models):
|
286 |
-
with gr.Tab(f"ControlNet Unit {i}",
|
287 |
-
elem_classes=['cnet-unit-tab']):
|
288 |
-
group, state = self.uigroup(f"ControlNet-{i}", is_img2img, elem_id_tabname)
|
289 |
-
infotext.register_unit(i, group)
|
290 |
-
controls += (state,)
|
291 |
-
else:
|
292 |
-
with gr.Column():
|
293 |
-
group, state = self.uigroup(f"ControlNet", is_img2img, elem_id_tabname)
|
294 |
-
infotext.register_unit(0, group)
|
295 |
-
controls += (state,)
|
296 |
-
|
297 |
-
if shared.opts.data.get("control_net_sync_field_args", True):
|
298 |
-
self.infotext_fields = infotext.infotext_fields
|
299 |
-
self.paste_field_names = infotext.paste_field_names
|
300 |
-
|
301 |
-
return controls
|
302 |
-
|
303 |
-
@staticmethod
|
304 |
-
def clear_control_model_cache():
|
305 |
-
Script.model_cache.clear()
|
306 |
-
gc.collect()
|
307 |
-
devices.torch_gc()
|
308 |
-
|
309 |
-
@staticmethod
|
310 |
-
def load_control_model(p, unet, model):
|
311 |
-
if model in Script.model_cache:
|
312 |
-
logger.info(f"Loading model from cache: {model}")
|
313 |
-
return Script.model_cache[model]
|
314 |
-
|
315 |
-
# Remove model from cache to clear space before building another model
|
316 |
-
if len(Script.model_cache) > 0 and len(Script.model_cache) >= shared.opts.data.get("control_net_model_cache_size", 2):
|
317 |
-
Script.model_cache.popitem(last=False)
|
318 |
-
gc.collect()
|
319 |
-
devices.torch_gc()
|
320 |
-
|
321 |
-
model_net = Script.build_control_model(p, unet, model)
|
322 |
-
|
323 |
-
if shared.opts.data.get("control_net_model_cache_size", 2) > 0:
|
324 |
-
Script.model_cache[model] = model_net
|
325 |
-
|
326 |
-
return model_net
|
327 |
-
|
328 |
-
@staticmethod
|
329 |
-
def build_control_model(p, unet, model):
|
330 |
-
if model is None or model == 'None':
|
331 |
-
raise RuntimeError(f"You have not selected any ControlNet Model.")
|
332 |
-
|
333 |
-
model_path = global_state.cn_models.get(model, None)
|
334 |
-
if model_path is None:
|
335 |
-
model = find_closest_lora_model_name(model)
|
336 |
-
model_path = global_state.cn_models.get(model, None)
|
337 |
-
|
338 |
-
if model_path is None:
|
339 |
-
raise RuntimeError(f"model not found: {model}")
|
340 |
-
|
341 |
-
# trim '"' at start/end
|
342 |
-
if model_path.startswith("\"") and model_path.endswith("\""):
|
343 |
-
model_path = model_path[1:-1]
|
344 |
-
|
345 |
-
if not os.path.exists(model_path):
|
346 |
-
raise ValueError(f"file not found: {model_path}")
|
347 |
-
|
348 |
-
logger.info(f"Loading model: {model}")
|
349 |
-
state_dict = load_state_dict(model_path)
|
350 |
-
network = build_model_by_guess(state_dict, unet, model_path)
|
351 |
-
network.to('cpu', dtype=p.sd_model.dtype)
|
352 |
-
logger.info(f"ControlNet model {model} loaded.")
|
353 |
-
return network
|
354 |
-
|
355 |
-
@staticmethod
|
356 |
-
def get_remote_call(p, attribute, default=None, idx=0, strict=False, force=False):
|
357 |
-
if not force and not shared.opts.data.get("control_net_allow_script_control", False):
|
358 |
-
return default
|
359 |
-
|
360 |
-
def get_element(obj, strict=False):
|
361 |
-
if not isinstance(obj, list):
|
362 |
-
return obj if not strict or idx == 0 else None
|
363 |
-
elif idx < len(obj):
|
364 |
-
return obj[idx]
|
365 |
-
else:
|
366 |
-
return None
|
367 |
-
|
368 |
-
attribute_value = get_element(getattr(p, attribute, None), strict)
|
369 |
-
default_value = get_element(default)
|
370 |
-
return attribute_value if attribute_value is not None else default_value
|
371 |
-
|
372 |
-
@staticmethod
|
373 |
-
def parse_remote_call(p, unit: external_code.ControlNetUnit, idx):
|
374 |
-
selector = Script.get_remote_call
|
375 |
-
|
376 |
-
unit.enabled = selector(p, "control_net_enabled", unit.enabled, idx, strict=True)
|
377 |
-
unit.module = selector(p, "control_net_module", unit.module, idx)
|
378 |
-
unit.model = selector(p, "control_net_model", unit.model, idx)
|
379 |
-
unit.weight = selector(p, "control_net_weight", unit.weight, idx)
|
380 |
-
unit.image = selector(p, "control_net_image", unit.image, idx)
|
381 |
-
unit.resize_mode = selector(p, "control_net_resize_mode", unit.resize_mode, idx)
|
382 |
-
unit.low_vram = selector(p, "control_net_lowvram", unit.low_vram, idx)
|
383 |
-
unit.processor_res = selector(p, "control_net_pres", unit.processor_res, idx)
|
384 |
-
unit.threshold_a = selector(p, "control_net_pthr_a", unit.threshold_a, idx)
|
385 |
-
unit.threshold_b = selector(p, "control_net_pthr_b", unit.threshold_b, idx)
|
386 |
-
unit.guidance_start = selector(p, "control_net_guidance_start", unit.guidance_start, idx)
|
387 |
-
unit.guidance_end = selector(p, "control_net_guidance_end", unit.guidance_end, idx)
|
388 |
-
# Backward compatibility. See https://github.com/Mikubill/sd-webui-controlnet/issues/1740
|
389 |
-
# for more details.
|
390 |
-
unit.guidance_end = selector(p, "control_net_guidance_strength", unit.guidance_end, idx)
|
391 |
-
unit.control_mode = selector(p, "control_net_control_mode", unit.control_mode, idx)
|
392 |
-
unit.pixel_perfect = selector(p, "control_net_pixel_perfect", unit.pixel_perfect, idx)
|
393 |
-
|
394 |
-
return unit
|
395 |
-
|
396 |
-
@staticmethod
|
397 |
-
def detectmap_proc(detected_map, module, resize_mode, h, w):
|
398 |
-
|
399 |
-
if 'inpaint' in module:
|
400 |
-
detected_map = detected_map.astype(np.float32)
|
401 |
-
else:
|
402 |
-
detected_map = HWC3(detected_map)
|
403 |
-
|
404 |
-
def safe_numpy(x):
|
405 |
-
# A very safe method to make sure that Apple/Mac works
|
406 |
-
y = x
|
407 |
-
|
408 |
-
# below is very boring but do not change these. If you change these Apple or Mac may fail.
|
409 |
-
y = y.copy()
|
410 |
-
y = np.ascontiguousarray(y)
|
411 |
-
y = y.copy()
|
412 |
-
return y
|
413 |
-
|
414 |
-
def get_pytorch_control(x):
|
415 |
-
# A very safe method to make sure that Apple/Mac works
|
416 |
-
y = x
|
417 |
-
|
418 |
-
# below is very boring but do not change these. If you change these Apple or Mac may fail.
|
419 |
-
y = torch.from_numpy(y)
|
420 |
-
y = y.float() / 255.0
|
421 |
-
y = rearrange(y, 'h w c -> 1 c h w')
|
422 |
-
y = y.clone()
|
423 |
-
y = y.to(devices.get_device_for("controlnet"))
|
424 |
-
y = y.clone()
|
425 |
-
return y
|
426 |
-
|
427 |
-
def high_quality_resize(x, size):
|
428 |
-
# Written by lvmin
|
429 |
-
# Super high-quality control map up-scaling, considering binary, seg, and one-pixel edges
|
430 |
-
|
431 |
-
inpaint_mask = None
|
432 |
-
if x.ndim == 3 and x.shape[2] == 4:
|
433 |
-
inpaint_mask = x[:, :, 3]
|
434 |
-
x = x[:, :, 0:3]
|
435 |
-
|
436 |
-
if x.shape[0] != size[1] or x.shape[1] != size[0]:
|
437 |
-
new_size_is_smaller = (size[0] * size[1]) < (x.shape[0] * x.shape[1])
|
438 |
-
new_size_is_bigger = (size[0] * size[1]) > (x.shape[0] * x.shape[1])
|
439 |
-
unique_color_count = len(get_unique_axis0(x.reshape(-1, x.shape[2])))
|
440 |
-
is_one_pixel_edge = False
|
441 |
-
is_binary = False
|
442 |
-
if unique_color_count == 2:
|
443 |
-
is_binary = np.min(x) < 16 and np.max(x) > 240
|
444 |
-
if is_binary:
|
445 |
-
xc = x
|
446 |
-
xc = cv2.erode(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
|
447 |
-
xc = cv2.dilate(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
|
448 |
-
one_pixel_edge_count = np.where(xc < x)[0].shape[0]
|
449 |
-
all_edge_count = np.where(x > 127)[0].shape[0]
|
450 |
-
is_one_pixel_edge = one_pixel_edge_count * 2 > all_edge_count
|
451 |
-
|
452 |
-
if 2 < unique_color_count < 200:
|
453 |
-
interpolation = cv2.INTER_NEAREST
|
454 |
-
elif new_size_is_smaller:
|
455 |
-
interpolation = cv2.INTER_AREA
|
456 |
-
else:
|
457 |
-
interpolation = cv2.INTER_CUBIC # Must be CUBIC because we now use nms. NEVER CHANGE THIS
|
458 |
-
|
459 |
-
y = cv2.resize(x, size, interpolation=interpolation)
|
460 |
-
if inpaint_mask is not None:
|
461 |
-
inpaint_mask = cv2.resize(inpaint_mask, size, interpolation=interpolation)
|
462 |
-
|
463 |
-
if is_binary:
|
464 |
-
y = np.mean(y.astype(np.float32), axis=2).clip(0, 255).astype(np.uint8)
|
465 |
-
if is_one_pixel_edge:
|
466 |
-
y = nake_nms(y)
|
467 |
-
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
468 |
-
y = lvmin_thin(y, prunings=new_size_is_bigger)
|
469 |
-
else:
|
470 |
-
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
471 |
-
y = np.stack([y] * 3, axis=2)
|
472 |
-
else:
|
473 |
-
y = x
|
474 |
-
|
475 |
-
if inpaint_mask is not None:
|
476 |
-
inpaint_mask = (inpaint_mask > 127).astype(np.float32) * 255.0
|
477 |
-
inpaint_mask = inpaint_mask[:, :, None].clip(0, 255).astype(np.uint8)
|
478 |
-
y = np.concatenate([y, inpaint_mask], axis=2)
|
479 |
-
|
480 |
-
return y
|
481 |
-
|
482 |
-
if resize_mode == external_code.ResizeMode.RESIZE:
|
483 |
-
detected_map = high_quality_resize(detected_map, (w, h))
|
484 |
-
detected_map = safe_numpy(detected_map)
|
485 |
-
return get_pytorch_control(detected_map), detected_map
|
486 |
-
|
487 |
-
old_h, old_w, _ = detected_map.shape
|
488 |
-
old_w = float(old_w)
|
489 |
-
old_h = float(old_h)
|
490 |
-
k0 = float(h) / old_h
|
491 |
-
k1 = float(w) / old_w
|
492 |
-
|
493 |
-
safeint = lambda x: int(np.round(x))
|
494 |
-
|
495 |
-
if resize_mode == external_code.ResizeMode.OUTER_FIT:
|
496 |
-
k = min(k0, k1)
|
497 |
-
borders = np.concatenate([detected_map[0, :, :], detected_map[-1, :, :], detected_map[:, 0, :], detected_map[:, -1, :]], axis=0)
|
498 |
-
high_quality_border_color = np.median(borders, axis=0).astype(detected_map.dtype)
|
499 |
-
if len(high_quality_border_color) == 4:
|
500 |
-
# Inpaint hijack
|
501 |
-
high_quality_border_color[3] = 255
|
502 |
-
high_quality_background = np.tile(high_quality_border_color[None, None], [h, w, 1])
|
503 |
-
detected_map = high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
|
504 |
-
new_h, new_w, _ = detected_map.shape
|
505 |
-
pad_h = max(0, (h - new_h) // 2)
|
506 |
-
pad_w = max(0, (w - new_w) // 2)
|
507 |
-
high_quality_background[pad_h:pad_h + new_h, pad_w:pad_w + new_w] = detected_map
|
508 |
-
detected_map = high_quality_background
|
509 |
-
detected_map = safe_numpy(detected_map)
|
510 |
-
return get_pytorch_control(detected_map), detected_map
|
511 |
-
else:
|
512 |
-
k = max(k0, k1)
|
513 |
-
detected_map = high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
|
514 |
-
new_h, new_w, _ = detected_map.shape
|
515 |
-
pad_h = max(0, (new_h - h) // 2)
|
516 |
-
pad_w = max(0, (new_w - w) // 2)
|
517 |
-
detected_map = detected_map[pad_h:pad_h+h, pad_w:pad_w+w]
|
518 |
-
detected_map = safe_numpy(detected_map)
|
519 |
-
return get_pytorch_control(detected_map), detected_map
|
520 |
-
|
521 |
-
@staticmethod
|
522 |
-
def get_enabled_units(p):
|
523 |
-
units = external_code.get_all_units_in_processing(p)
|
524 |
-
if len(units) == 0:
|
525 |
-
# fill a null group
|
526 |
-
remote_unit = Script.parse_remote_call(p, Script.get_default_ui_unit(), 0)
|
527 |
-
if remote_unit.enabled:
|
528 |
-
units.append(remote_unit)
|
529 |
-
|
530 |
-
enabled_units = [
|
531 |
-
copy(local_unit)
|
532 |
-
for idx, unit in enumerate(units)
|
533 |
-
for local_unit in (Script.parse_remote_call(p, unit, idx),)
|
534 |
-
if local_unit.enabled
|
535 |
-
]
|
536 |
-
Infotext.write_infotext(enabled_units, p)
|
537 |
-
return enabled_units
|
538 |
-
|
539 |
-
@staticmethod
|
540 |
-
def choose_input_image(
|
541 |
-
p: processing.StableDiffusionProcessing,
|
542 |
-
unit: external_code.ControlNetUnit,
|
543 |
-
idx: int
|
544 |
-
) -> Tuple[np.ndarray, bool]:
|
545 |
-
""" Choose input image from following sources with descending priority:
|
546 |
-
- p.image_control: [Deprecated] Lagacy way to pass image to controlnet.
|
547 |
-
- p.control_net_input_image: [Deprecated] Lagacy way to pass image to controlnet.
|
548 |
-
- unit.image:
|
549 |
-
- ControlNet tab input image.
|
550 |
-
- Input image from API call.
|
551 |
-
- p.init_images: A1111 img2img tab input image.
|
552 |
-
|
553 |
-
Returns:
|
554 |
-
- The input image in ndarray form.
|
555 |
-
- Whether input image is from A1111.
|
556 |
-
"""
|
557 |
-
image_from_a1111 = False
|
558 |
-
|
559 |
-
p_input_image = Script.get_remote_call(p, "control_net_input_image", None, idx)
|
560 |
-
image = image_dict_from_any(unit.image)
|
561 |
-
|
562 |
-
if batch_hijack.instance.is_batch and getattr(p, "image_control", None) is not None:
|
563 |
-
logger.warning("Warn: Using legacy field 'p.image_control'.")
|
564 |
-
input_image = HWC3(np.asarray(p.image_control))
|
565 |
-
elif p_input_image is not None:
|
566 |
-
logger.warning("Warn: Using legacy field 'p.controlnet_input_image'")
|
567 |
-
if isinstance(p_input_image, dict) and "mask" in p_input_image and "image" in p_input_image:
|
568 |
-
color = HWC3(np.asarray(p_input_image['image']))
|
569 |
-
alpha = np.asarray(p_input_image['mask'])[..., None]
|
570 |
-
input_image = np.concatenate([color, alpha], axis=2)
|
571 |
-
else:
|
572 |
-
input_image = HWC3(np.asarray(p_input_image))
|
573 |
-
elif image is not None:
|
574 |
-
while len(image['mask'].shape) < 3:
|
575 |
-
image['mask'] = image['mask'][..., np.newaxis]
|
576 |
-
|
577 |
-
# Need to check the image for API compatibility
|
578 |
-
if isinstance(image['image'], str):
|
579 |
-
from modules.api.api import decode_base64_to_image
|
580 |
-
input_image = HWC3(np.asarray(decode_base64_to_image(image['image'])))
|
581 |
-
else:
|
582 |
-
input_image = HWC3(image['image'])
|
583 |
-
|
584 |
-
have_mask = 'mask' in image and not (
|
585 |
-
(image['mask'][:, :, 0] <= 5).all() or
|
586 |
-
(image['mask'][:, :, 0] >= 250).all()
|
587 |
-
)
|
588 |
-
|
589 |
-
if 'inpaint' in unit.module:
|
590 |
-
logger.info("using inpaint as input")
|
591 |
-
color = HWC3(image['image'])
|
592 |
-
if have_mask:
|
593 |
-
alpha = image['mask'][:, :, 0:1]
|
594 |
-
else:
|
595 |
-
alpha = np.zeros_like(color)[:, :, 0:1]
|
596 |
-
input_image = np.concatenate([color, alpha], axis=2)
|
597 |
-
else:
|
598 |
-
if have_mask and not shared.opts.data.get("controlnet_ignore_noninpaint_mask", False):
|
599 |
-
logger.info("using mask as input")
|
600 |
-
input_image = HWC3(image['mask'][:, :, 0])
|
601 |
-
unit.module = 'none' # Always use black bg and white line
|
602 |
-
else:
|
603 |
-
# use img2img init_image as default
|
604 |
-
input_image = getattr(p, "init_images", [None])[0]
|
605 |
-
if input_image is None:
|
606 |
-
if batch_hijack.instance.is_batch:
|
607 |
-
shared.state.interrupted = True
|
608 |
-
raise ValueError('controlnet is enabled but no input image is given')
|
609 |
-
|
610 |
-
input_image = HWC3(np.asarray(input_image))
|
611 |
-
image_from_a1111 = True
|
612 |
-
|
613 |
-
assert isinstance(input_image, np.ndarray)
|
614 |
-
return input_image, image_from_a1111
|
615 |
-
|
616 |
-
@staticmethod
|
617 |
-
def bound_check_params(unit: external_code.ControlNetUnit) -> None:
|
618 |
-
"""
|
619 |
-
Checks and corrects negative parameters in ControlNetUnit 'unit'.
|
620 |
-
Parameters 'processor_res', 'threshold_a', 'threshold_b' are reset to
|
621 |
-
their default values if negative.
|
622 |
-
|
623 |
-
Args:
|
624 |
-
unit (external_code.ControlNetUnit): The ControlNetUnit instance to check.
|
625 |
-
"""
|
626 |
-
cfg = preprocessor_sliders_config.get(
|
627 |
-
global_state.get_module_basename(unit.module), [])
|
628 |
-
defaults = {
|
629 |
-
param: cfg_default['value']
|
630 |
-
for param, cfg_default in zip(
|
631 |
-
("processor_res", 'threshold_a', 'threshold_b'), cfg)
|
632 |
-
if cfg_default is not None
|
633 |
-
}
|
634 |
-
for param, default_value in defaults.items():
|
635 |
-
value = getattr(unit, param)
|
636 |
-
if value < 0:
|
637 |
-
setattr(unit, param, default_value)
|
638 |
-
logger.warning(f'[{unit.module}.{param}] Invalid value({value}), using default value {default_value}.')
|
639 |
-
|
640 |
-
def controlnet_main_entry(self, p):
|
641 |
-
sd_ldm = p.sd_model
|
642 |
-
unet = sd_ldm.model.diffusion_model
|
643 |
-
self.noise_modifier = None
|
644 |
-
|
645 |
-
setattr(p, 'controlnet_control_loras', [])
|
646 |
-
|
647 |
-
if self.latest_network is not None:
|
648 |
-
# always restore (~0.05s)
|
649 |
-
self.latest_network.restore()
|
650 |
-
|
651 |
-
# always clear (~0.05s)
|
652 |
-
clear_all_secondary_control_models()
|
653 |
-
|
654 |
-
if not batch_hijack.instance.is_batch:
|
655 |
-
self.enabled_units = Script.get_enabled_units(p)
|
656 |
-
|
657 |
-
if len(self.enabled_units) == 0:
|
658 |
-
self.latest_network = None
|
659 |
-
return
|
660 |
-
|
661 |
-
detected_maps = []
|
662 |
-
forward_params = []
|
663 |
-
post_processors = []
|
664 |
-
|
665 |
-
# cache stuff
|
666 |
-
if self.latest_model_hash != p.sd_model.sd_model_hash:
|
667 |
-
Script.clear_control_model_cache()
|
668 |
-
|
669 |
-
for idx, unit in enumerate(self.enabled_units):
|
670 |
-
unit.module = global_state.get_module_basename(unit.module)
|
671 |
-
|
672 |
-
# unload unused preproc
|
673 |
-
module_list = [unit.module for unit in self.enabled_units]
|
674 |
-
for key in self.unloadable:
|
675 |
-
if key not in module_list:
|
676 |
-
self.unloadable.get(key, lambda:None)()
|
677 |
-
|
678 |
-
self.latest_model_hash = p.sd_model.sd_model_hash
|
679 |
-
for idx, unit in enumerate(self.enabled_units):
|
680 |
-
Script.bound_check_params(unit)
|
681 |
-
|
682 |
-
resize_mode = external_code.resize_mode_from_value(unit.resize_mode)
|
683 |
-
control_mode = external_code.control_mode_from_value(unit.control_mode)
|
684 |
-
|
685 |
-
if unit.module in model_free_preprocessors:
|
686 |
-
model_net = None
|
687 |
-
else:
|
688 |
-
model_net = Script.load_control_model(p, unet, unit.model)
|
689 |
-
model_net.reset()
|
690 |
-
|
691 |
-
if getattr(model_net, 'is_control_lora', False):
|
692 |
-
control_lora = model_net.control_model
|
693 |
-
bind_control_lora(unet, control_lora)
|
694 |
-
p.controlnet_control_loras.append(control_lora)
|
695 |
-
|
696 |
-
input_image, image_from_a1111 = Script.choose_input_image(p, unit, idx)
|
697 |
-
if image_from_a1111:
|
698 |
-
a1111_i2i_resize_mode = getattr(p, "resize_mode", None)
|
699 |
-
if a1111_i2i_resize_mode is not None:
|
700 |
-
resize_mode = external_code.resize_mode_from_value(a1111_i2i_resize_mode)
|
701 |
-
|
702 |
-
a1111_mask_image : Optional[Image.Image] = getattr(p, "image_mask", None)
|
703 |
-
if 'inpaint' in unit.module and not image_has_mask(input_image) and a1111_mask_image is not None:
|
704 |
-
a1111_mask = np.array(prepare_mask(a1111_mask_image, p))
|
705 |
-
if a1111_mask.ndim == 2:
|
706 |
-
if a1111_mask.shape[0] == input_image.shape[0]:
|
707 |
-
if a1111_mask.shape[1] == input_image.shape[1]:
|
708 |
-
input_image = np.concatenate([input_image[:, :, 0:3], a1111_mask[:, :, None]], axis=2)
|
709 |
-
a1111_i2i_resize_mode = getattr(p, "resize_mode", None)
|
710 |
-
if a1111_i2i_resize_mode is not None:
|
711 |
-
resize_mode = external_code.resize_mode_from_value(a1111_i2i_resize_mode)
|
712 |
-
|
713 |
-
if 'reference' not in unit.module and issubclass(type(p), StableDiffusionProcessingImg2Img) \
|
714 |
-
and p.inpaint_full_res and a1111_mask_image is not None:
|
715 |
-
logger.debug("A1111 inpaint mask START")
|
716 |
-
input_image = [input_image[:, :, i] for i in range(input_image.shape[2])]
|
717 |
-
input_image = [Image.fromarray(x) for x in input_image]
|
718 |
-
|
719 |
-
mask = prepare_mask(a1111_mask_image, p)
|
720 |
-
|
721 |
-
crop_region = masking.get_crop_region(np.array(mask), p.inpaint_full_res_padding)
|
722 |
-
crop_region = masking.expand_crop_region(crop_region, p.width, p.height, mask.width, mask.height)
|
723 |
-
|
724 |
-
input_image = [
|
725 |
-
images.resize_image(resize_mode.int_value(), i, mask.width, mask.height)
|
726 |
-
for i in input_image
|
727 |
-
]
|
728 |
-
|
729 |
-
input_image = [x.crop(crop_region) for x in input_image]
|
730 |
-
input_image = [
|
731 |
-
images.resize_image(external_code.ResizeMode.OUTER_FIT.int_value(), x, p.width, p.height)
|
732 |
-
for x in input_image
|
733 |
-
]
|
734 |
-
|
735 |
-
input_image = [np.asarray(x)[:, :, 0] for x in input_image]
|
736 |
-
input_image = np.stack(input_image, axis=2)
|
737 |
-
logger.debug("A1111 inpaint mask END")
|
738 |
-
|
739 |
-
if 'inpaint_only' == unit.module and issubclass(type(p), StableDiffusionProcessingImg2Img) and p.image_mask is not None:
|
740 |
-
logger.warning('A1111 inpaint and ControlNet inpaint duplicated. ControlNet support enabled.')
|
741 |
-
unit.module = 'inpaint'
|
742 |
-
|
743 |
-
# safe numpy
|
744 |
-
logger.debug("Safe numpy convertion START")
|
745 |
-
input_image = np.ascontiguousarray(input_image.copy()).copy()
|
746 |
-
logger.debug("Safe numpy convertion END")
|
747 |
-
|
748 |
-
logger.info(f"Loading preprocessor: {unit.module}")
|
749 |
-
preprocessor = self.preprocessor[unit.module]
|
750 |
-
|
751 |
-
high_res_fix = isinstance(p, StableDiffusionProcessingTxt2Img) and getattr(p, 'enable_hr', False)
|
752 |
-
|
753 |
-
h = (p.height // 8) * 8
|
754 |
-
w = (p.width // 8) * 8
|
755 |
-
|
756 |
-
if high_res_fix:
|
757 |
-
if p.hr_resize_x == 0 and p.hr_resize_y == 0:
|
758 |
-
hr_y = int(p.height * p.hr_scale)
|
759 |
-
hr_x = int(p.width * p.hr_scale)
|
760 |
-
else:
|
761 |
-
hr_y, hr_x = p.hr_resize_y, p.hr_resize_x
|
762 |
-
hr_y = (hr_y // 8) * 8
|
763 |
-
hr_x = (hr_x // 8) * 8
|
764 |
-
else:
|
765 |
-
hr_y = h
|
766 |
-
hr_x = w
|
767 |
-
|
768 |
-
if unit.module == 'inpaint_only+lama' and resize_mode == external_code.ResizeMode.OUTER_FIT:
|
769 |
-
# inpaint_only+lama is special and required outpaint fix
|
770 |
-
_, input_image = Script.detectmap_proc(input_image, unit.module, resize_mode, hr_y, hr_x)
|
771 |
-
|
772 |
-
control_model_type = ControlModelType.ControlNet
|
773 |
-
global_average_pooling = False
|
774 |
-
|
775 |
-
if 'reference' in unit.module:
|
776 |
-
control_model_type = ControlModelType.AttentionInjection
|
777 |
-
elif 'revision' in unit.module:
|
778 |
-
control_model_type = ControlModelType.ReVision
|
779 |
-
elif hasattr(model_net, 'control_model') and (isinstance(model_net.control_model, Adapter) or isinstance(model_net.control_model, Adapter_light)):
|
780 |
-
control_model_type = ControlModelType.T2I_Adapter
|
781 |
-
elif hasattr(model_net, 'control_model') and isinstance(model_net.control_model, StyleAdapter):
|
782 |
-
control_model_type = ControlModelType.T2I_StyleAdapter
|
783 |
-
elif isinstance(model_net, PlugableIPAdapter):
|
784 |
-
control_model_type = ControlModelType.IPAdapter
|
785 |
-
elif isinstance(model_net, PlugableControlLLLite):
|
786 |
-
control_model_type = ControlModelType.Controlllite
|
787 |
-
|
788 |
-
if control_model_type is ControlModelType.ControlNet:
|
789 |
-
global_average_pooling = model_net.control_model.global_average_pooling
|
790 |
-
|
791 |
-
preprocessor_resolution = unit.processor_res
|
792 |
-
if unit.pixel_perfect:
|
793 |
-
preprocessor_resolution = external_code.pixel_perfect_resolution(
|
794 |
-
input_image,
|
795 |
-
target_H=h,
|
796 |
-
target_W=w,
|
797 |
-
resize_mode=resize_mode
|
798 |
-
)
|
799 |
-
|
800 |
-
logger.info(f'preprocessor resolution = {preprocessor_resolution}')
|
801 |
-
# Preprocessor result may depend on numpy random operations, use the
|
802 |
-
# random seed in `StableDiffusionProcessing` to make the
|
803 |
-
# preprocessor result reproducable.
|
804 |
-
# Currently following preprocessors use numpy random:
|
805 |
-
# - shuffle
|
806 |
-
seed = set_numpy_seed(p)
|
807 |
-
logger.debug(f"Use numpy seed {seed}.")
|
808 |
-
detected_map, is_image = preprocessor(
|
809 |
-
input_image,
|
810 |
-
res=preprocessor_resolution,
|
811 |
-
thr_a=unit.threshold_a,
|
812 |
-
thr_b=unit.threshold_b,
|
813 |
-
)
|
814 |
-
|
815 |
-
if high_res_fix:
|
816 |
-
if is_image:
|
817 |
-
hr_control, hr_detected_map = Script.detectmap_proc(detected_map, unit.module, resize_mode, hr_y, hr_x)
|
818 |
-
detected_maps.append((hr_detected_map, unit.module))
|
819 |
-
else:
|
820 |
-
hr_control = detected_map
|
821 |
-
else:
|
822 |
-
hr_control = None
|
823 |
-
|
824 |
-
if is_image:
|
825 |
-
control, detected_map = Script.detectmap_proc(detected_map, unit.module, resize_mode, h, w)
|
826 |
-
detected_maps.append((detected_map, unit.module))
|
827 |
-
else:
|
828 |
-
control = detected_map
|
829 |
-
detected_maps.append((input_image, unit.module))
|
830 |
-
|
831 |
-
if control_model_type == ControlModelType.T2I_StyleAdapter:
|
832 |
-
control = control['last_hidden_state']
|
833 |
-
|
834 |
-
if control_model_type == ControlModelType.ReVision:
|
835 |
-
control = control['image_embeds']
|
836 |
-
|
837 |
-
preprocessor_dict = dict(
|
838 |
-
name=unit.module,
|
839 |
-
preprocessor_resolution=preprocessor_resolution,
|
840 |
-
threshold_a=unit.threshold_a,
|
841 |
-
threshold_b=unit.threshold_b
|
842 |
-
)
|
843 |
-
|
844 |
-
forward_param = ControlParams(
|
845 |
-
control_model=model_net,
|
846 |
-
preprocessor=preprocessor_dict,
|
847 |
-
hint_cond=control,
|
848 |
-
weight=unit.weight,
|
849 |
-
guidance_stopped=False,
|
850 |
-
start_guidance_percent=unit.guidance_start,
|
851 |
-
stop_guidance_percent=unit.guidance_end,
|
852 |
-
advanced_weighting=None,
|
853 |
-
control_model_type=control_model_type,
|
854 |
-
global_average_pooling=global_average_pooling,
|
855 |
-
hr_hint_cond=hr_control,
|
856 |
-
soft_injection=control_mode != external_code.ControlMode.BALANCED,
|
857 |
-
cfg_injection=control_mode == external_code.ControlMode.CONTROL,
|
858 |
-
)
|
859 |
-
forward_params.append(forward_param)
|
860 |
-
|
861 |
-
if 'inpaint_only' in unit.module:
|
862 |
-
final_inpaint_feed = hr_control if hr_control is not None else control
|
863 |
-
final_inpaint_feed = final_inpaint_feed.detach().cpu().numpy()
|
864 |
-
final_inpaint_feed = np.ascontiguousarray(final_inpaint_feed).copy()
|
865 |
-
final_inpaint_mask = final_inpaint_feed[0, 3, :, :].astype(np.float32)
|
866 |
-
final_inpaint_raw = final_inpaint_feed[0, :3].astype(np.float32)
|
867 |
-
sigma = shared.opts.data.get("control_net_inpaint_blur_sigma", 7)
|
868 |
-
final_inpaint_mask = cv2.dilate(final_inpaint_mask, np.ones((sigma, sigma), dtype=np.uint8))
|
869 |
-
final_inpaint_mask = cv2.blur(final_inpaint_mask, (sigma, sigma))[None]
|
870 |
-
_, Hmask, Wmask = final_inpaint_mask.shape
|
871 |
-
final_inpaint_raw = torch.from_numpy(np.ascontiguousarray(final_inpaint_raw).copy())
|
872 |
-
final_inpaint_mask = torch.from_numpy(np.ascontiguousarray(final_inpaint_mask).copy())
|
873 |
-
|
874 |
-
def inpaint_only_post_processing(x):
|
875 |
-
_, H, W = x.shape
|
876 |
-
if Hmask != H or Wmask != W:
|
877 |
-
logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
|
878 |
-
return x
|
879 |
-
r = final_inpaint_raw.to(x.dtype).to(x.device)
|
880 |
-
m = final_inpaint_mask.to(x.dtype).to(x.device)
|
881 |
-
y = m * x.clip(0, 1) + (1 - m) * r
|
882 |
-
y = y.clip(0, 1)
|
883 |
-
return y
|
884 |
-
|
885 |
-
post_processors.append(inpaint_only_post_processing)
|
886 |
-
|
887 |
-
if 'recolor' in unit.module:
|
888 |
-
final_feed = hr_control if hr_control is not None else control
|
889 |
-
final_feed = final_feed.detach().cpu().numpy()
|
890 |
-
final_feed = np.ascontiguousarray(final_feed).copy()
|
891 |
-
final_feed = final_feed[0, 0, :, :].astype(np.float32)
|
892 |
-
final_feed = (final_feed * 255).clip(0, 255).astype(np.uint8)
|
893 |
-
Hfeed, Wfeed = final_feed.shape
|
894 |
-
|
895 |
-
if 'luminance' in unit.module:
|
896 |
-
|
897 |
-
def recolor_luminance_post_processing(x):
|
898 |
-
C, H, W = x.shape
|
899 |
-
if Hfeed != H or Wfeed != W or C != 3:
|
900 |
-
logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
|
901 |
-
return x
|
902 |
-
h = x.detach().cpu().numpy().transpose((1, 2, 0))
|
903 |
-
h = (h * 255).clip(0, 255).astype(np.uint8)
|
904 |
-
h = cv2.cvtColor(h, cv2.COLOR_RGB2LAB)
|
905 |
-
h[:, :, 0] = final_feed
|
906 |
-
h = cv2.cvtColor(h, cv2.COLOR_LAB2RGB)
|
907 |
-
h = (h.astype(np.float32) / 255.0).transpose((2, 0, 1))
|
908 |
-
y = torch.from_numpy(h).clip(0, 1).to(x)
|
909 |
-
return y
|
910 |
-
|
911 |
-
post_processors.append(recolor_luminance_post_processing)
|
912 |
-
|
913 |
-
if 'intensity' in unit.module:
|
914 |
-
|
915 |
-
def recolor_intensity_post_processing(x):
|
916 |
-
C, H, W = x.shape
|
917 |
-
if Hfeed != H or Wfeed != W or C != 3:
|
918 |
-
logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
|
919 |
-
return x
|
920 |
-
h = x.detach().cpu().numpy().transpose((1, 2, 0))
|
921 |
-
h = (h * 255).clip(0, 255).astype(np.uint8)
|
922 |
-
h = cv2.cvtColor(h, cv2.COLOR_RGB2HSV)
|
923 |
-
h[:, :, 2] = final_feed
|
924 |
-
h = cv2.cvtColor(h, cv2.COLOR_HSV2RGB)
|
925 |
-
h = (h.astype(np.float32) / 255.0).transpose((2, 0, 1))
|
926 |
-
y = torch.from_numpy(h).clip(0, 1).to(x)
|
927 |
-
return y
|
928 |
-
|
929 |
-
post_processors.append(recolor_intensity_post_processing)
|
930 |
-
|
931 |
-
if '+lama' in unit.module:
|
932 |
-
forward_param.used_hint_cond_latent = hook.UnetHook.call_vae_using_process(p, control)
|
933 |
-
self.noise_modifier = forward_param.used_hint_cond_latent
|
934 |
-
|
935 |
-
del model_net
|
936 |
-
|
937 |
-
is_low_vram = any(unit.low_vram for unit in self.enabled_units)
|
938 |
-
|
939 |
-
self.latest_network = UnetHook(lowvram=is_low_vram)
|
940 |
-
self.latest_network.hook(model=unet, sd_ldm=sd_ldm, control_params=forward_params, process=p)
|
941 |
-
|
942 |
-
for param in forward_params:
|
943 |
-
if param.control_model_type == ControlModelType.IPAdapter:
|
944 |
-
param.control_model.hook(
|
945 |
-
model=unet,
|
946 |
-
clip_vision_output=param.hint_cond,
|
947 |
-
weight=param.weight,
|
948 |
-
dtype=torch.float32,
|
949 |
-
start=param.start_guidance_percent,
|
950 |
-
end=param.stop_guidance_percent
|
951 |
-
)
|
952 |
-
if param.control_model_type == ControlModelType.Controlllite:
|
953 |
-
param.control_model.hook(
|
954 |
-
model=unet,
|
955 |
-
cond=param.hint_cond,
|
956 |
-
weight=param.weight,
|
957 |
-
start=param.start_guidance_percent,
|
958 |
-
end=param.stop_guidance_percent
|
959 |
-
)
|
960 |
-
|
961 |
-
self.detected_map = detected_maps
|
962 |
-
self.post_processors = post_processors
|
963 |
-
|
964 |
-
def controlnet_hack(self, p):
|
965 |
-
t = time.time()
|
966 |
-
self.controlnet_main_entry(p)
|
967 |
-
if len(self.enabled_units) > 0:
|
968 |
-
logger.info(f'ControlNet Hooked - Time = {time.time() - t}')
|
969 |
-
return
|
970 |
-
|
971 |
-
@staticmethod
|
972 |
-
def process_has_sdxl_refiner(p):
|
973 |
-
return getattr(p, 'refiner_checkpoint', None) is not None
|
974 |
-
|
975 |
-
def process(self, p, *args, **kwargs):
|
976 |
-
if not Script.process_has_sdxl_refiner(p):
|
977 |
-
self.controlnet_hack(p)
|
978 |
-
return
|
979 |
-
|
980 |
-
def before_process_batch(self, p, *args, **kwargs):
|
981 |
-
if self.noise_modifier is not None:
|
982 |
-
p.rng = HackedImageRNG(rng=p.rng,
|
983 |
-
noise_modifier=self.noise_modifier,
|
984 |
-
sd_model=p.sd_model)
|
985 |
-
self.noise_modifier = None
|
986 |
-
if Script.process_has_sdxl_refiner(p):
|
987 |
-
self.controlnet_hack(p)
|
988 |
-
return
|
989 |
-
|
990 |
-
def postprocess_batch(self, p, *args, **kwargs):
|
991 |
-
images = kwargs.get('images', [])
|
992 |
-
for post_processor in self.post_processors:
|
993 |
-
for i in range(len(images)):
|
994 |
-
images[i] = post_processor(images[i])
|
995 |
-
return
|
996 |
-
|
997 |
-
def postprocess(self, p, processed, *args):
|
998 |
-
clear_all_secondary_control_models()
|
999 |
-
|
1000 |
-
self.noise_modifier = None
|
1001 |
-
|
1002 |
-
for control_lora in getattr(p, 'controlnet_control_loras', []):
|
1003 |
-
unbind_control_lora(control_lora)
|
1004 |
-
p.controlnet_control_loras = []
|
1005 |
-
|
1006 |
-
self.post_processors = []
|
1007 |
-
setattr(p, 'controlnet_vae_cache', None)
|
1008 |
-
|
1009 |
-
processor_params_flag = (', '.join(getattr(processed, 'extra_generation_params', []))).lower()
|
1010 |
-
self.post_processors = []
|
1011 |
-
|
1012 |
-
if not batch_hijack.instance.is_batch:
|
1013 |
-
self.enabled_units.clear()
|
1014 |
-
|
1015 |
-
if shared.opts.data.get("control_net_detectmap_autosaving", False) and self.latest_network is not None:
|
1016 |
-
for detect_map, module in self.detected_map:
|
1017 |
-
detectmap_dir = os.path.join(shared.opts.data.get("control_net_detectedmap_dir", ""), module)
|
1018 |
-
if not os.path.isabs(detectmap_dir):
|
1019 |
-
detectmap_dir = os.path.join(p.outpath_samples, detectmap_dir)
|
1020 |
-
if module != "none":
|
1021 |
-
os.makedirs(detectmap_dir, exist_ok=True)
|
1022 |
-
img = Image.fromarray(np.ascontiguousarray(detect_map.clip(0, 255).astype(np.uint8)).copy())
|
1023 |
-
save_image(img, detectmap_dir, module)
|
1024 |
-
|
1025 |
-
if self.latest_network is None:
|
1026 |
-
return
|
1027 |
-
|
1028 |
-
if not batch_hijack.instance.is_batch:
|
1029 |
-
if not shared.opts.data.get("control_net_no_detectmap", False):
|
1030 |
-
if 'sd upscale' not in processor_params_flag:
|
1031 |
-
if self.detected_map is not None:
|
1032 |
-
for detect_map, module in self.detected_map:
|
1033 |
-
if detect_map is None:
|
1034 |
-
continue
|
1035 |
-
detect_map = np.ascontiguousarray(detect_map.copy()).copy()
|
1036 |
-
detect_map = external_code.visualize_inpaint_mask(detect_map)
|
1037 |
-
processed.images.extend([
|
1038 |
-
Image.fromarray(
|
1039 |
-
detect_map.clip(0, 255).astype(np.uint8)
|
1040 |
-
)
|
1041 |
-
])
|
1042 |
-
|
1043 |
-
self.input_image = None
|
1044 |
-
self.latest_network.restore()
|
1045 |
-
self.latest_network = None
|
1046 |
-
self.detected_map.clear()
|
1047 |
-
|
1048 |
-
gc.collect()
|
1049 |
-
devices.torch_gc()
|
1050 |
-
|
1051 |
-
def batch_tab_process(self, p, batches, *args, **kwargs):
|
1052 |
-
self.enabled_units = self.get_enabled_units(p)
|
1053 |
-
for unit_i, unit in enumerate(self.enabled_units):
|
1054 |
-
unit.batch_images = iter([batch[unit_i] for batch in batches])
|
1055 |
-
|
1056 |
-
def batch_tab_process_each(self, p, *args, **kwargs):
|
1057 |
-
for unit_i, unit in enumerate(self.enabled_units):
|
1058 |
-
if getattr(unit, 'loopback', False) and batch_hijack.instance.batch_index > 0: continue
|
1059 |
-
|
1060 |
-
unit.image = next(unit.batch_images)
|
1061 |
-
|
1062 |
-
def batch_tab_postprocess_each(self, p, processed, *args, **kwargs):
|
1063 |
-
for unit_i, unit in enumerate(self.enabled_units):
|
1064 |
-
if getattr(unit, 'loopback', False):
|
1065 |
-
output_images = getattr(processed, 'images', [])[processed.index_of_first_image:]
|
1066 |
-
if output_images:
|
1067 |
-
unit.image = np.array(output_images[0])
|
1068 |
-
else:
|
1069 |
-
logger.warning(f'Warning: No loopback image found for controlnet unit {unit_i}. Using control map from last batch iteration instead')
|
1070 |
-
|
1071 |
-
def batch_tab_postprocess(self, p, *args, **kwargs):
|
1072 |
-
self.enabled_units.clear()
|
1073 |
-
self.input_image = None
|
1074 |
-
if self.latest_network is None: return
|
1075 |
-
|
1076 |
-
self.latest_network.restore()
|
1077 |
-
self.latest_network = None
|
1078 |
-
self.detected_map.clear()
|
1079 |
-
|
1080 |
-
|
1081 |
-
def on_ui_settings():
|
1082 |
-
section = ('control_net', "ControlNet")
|
1083 |
-
shared.opts.add_option("control_net_detectedmap_dir", shared.OptionInfo(
|
1084 |
-
global_state.default_detectedmap_dir, "Directory for detected maps auto saving", section=section))
|
1085 |
-
shared.opts.add_option("control_net_models_path", shared.OptionInfo(
|
1086 |
-
"", "Extra path to scan for ControlNet models (e.g. training output directory)", section=section))
|
1087 |
-
shared.opts.add_option("control_net_modules_path", shared.OptionInfo(
|
1088 |
-
"", "Path to directory containing annotator model directories (requires restart, overrides corresponding command line flag)", section=section))
|
1089 |
-
shared.opts.add_option("control_net_unit_count", shared.OptionInfo(
|
1090 |
-
3, "Multi-ControlNet: ControlNet unit number (requires restart)", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}, section=section))
|
1091 |
-
shared.opts.add_option("control_net_model_cache_size", shared.OptionInfo(
|
1092 |
-
1, "Model cache size (requires restart)", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}, section=section))
|
1093 |
-
shared.opts.add_option("control_net_inpaint_blur_sigma", shared.OptionInfo(
|
1094 |
-
7, "ControlNet inpainting Gaussian blur sigma", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}, section=section))
|
1095 |
-
shared.opts.add_option("control_net_no_high_res_fix", shared.OptionInfo(
|
1096 |
-
True, "Do not apply ControlNet during highres fix", gr.Checkbox, {"interactive": True}, section=section))
|
1097 |
-
shared.opts.add_option("control_net_no_detectmap", shared.OptionInfo(
|
1098 |
-
False, "Do not append detectmap to output", gr.Checkbox, {"interactive": True}, section=section))
|
1099 |
-
shared.opts.add_option("control_net_detectmap_autosaving", shared.OptionInfo(
|
1100 |
-
False, "Allow detectmap auto saving", gr.Checkbox, {"interactive": True}, section=section))
|
1101 |
-
shared.opts.add_option("control_net_allow_script_control", shared.OptionInfo(
|
1102 |
-
True, "Allow other script to control this extension", gr.Checkbox, {"interactive": True}, section=section))
|
1103 |
-
shared.opts.add_option("control_net_sync_field_args", shared.OptionInfo(
|
1104 |
-
True, "Paste ControlNet parameters in infotext", gr.Checkbox, {"interactive": True}, section=section))
|
1105 |
-
shared.opts.add_option("controlnet_show_batch_images_in_ui", shared.OptionInfo(
|
1106 |
-
False, "Show batch images in gradio gallery output", gr.Checkbox, {"interactive": True}, section=section))
|
1107 |
-
shared.opts.add_option("controlnet_increment_seed_during_batch", shared.OptionInfo(
|
1108 |
-
False, "Increment seed after each controlnet batch iteration", gr.Checkbox, {"interactive": True}, section=section))
|
1109 |
-
shared.opts.add_option("controlnet_disable_control_type", shared.OptionInfo(
|
1110 |
-
False, "Disable control type selection", gr.Checkbox, {"interactive": True}, section=section))
|
1111 |
-
shared.opts.add_option("controlnet_disable_openpose_edit", shared.OptionInfo(
|
1112 |
-
False, "Disable openpose edit", gr.Checkbox, {"interactive": True}, section=section))
|
1113 |
-
shared.opts.add_option("controlnet_ignore_noninpaint_mask", shared.OptionInfo(
|
1114 |
-
False, "Ignore mask on ControlNet input image if control type is not inpaint",
|
1115 |
-
gr.Checkbox, {"interactive": True}, section=section))
|
1116 |
-
|
1117 |
-
|
1118 |
-
batch_hijack.instance.do_hijack()
|
1119 |
-
script_callbacks.on_ui_settings(on_ui_settings)
|
1120 |
-
script_callbacks.on_infotext_pasted(Infotext.on_infotext_pasted)
|
1121 |
-
script_callbacks.on_after_component(ControlNetUiGroup.on_after_component)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|