Transformers
Inference Endpoints
pantat88 commited on
Commit
5dc5b42
·
1 Parent(s): 299ab45

Delete controlnet.py

Browse files
Files changed (1) hide show
  1. controlnet.py +0 -1121
controlnet.py DELETED
@@ -1,1121 +0,0 @@
1
- import gc
2
- import os
3
- import logging
4
- import re
5
- from collections import OrderedDict
6
- from copy import copy
7
- from typing import Dict, Optional, Tuple
8
- import modules.scripts as scripts
9
- from modules import shared, devices, script_callbacks, processing, masking, images
10
- import gradio as gr
11
- import time
12
-
13
-
14
- from einops import rearrange
15
- from scripts import global_state, hook, external_code, processor, batch_hijack, controlnet_version, utils
16
- from scripts.controlnet_lora import bind_control_lora, unbind_control_lora
17
- from scripts.processor import *
18
- from scripts.adapter import Adapter, StyleAdapter, Adapter_light
19
- from scripts.controlnet_lllite import PlugableControlLLLite, clear_all_lllite
20
- from scripts.controlmodel_ipadapter import PlugableIPAdapter, clear_all_ip_adapter
21
- from scripts.utils import load_state_dict, get_unique_axis0
22
- from scripts.hook import ControlParams, UnetHook, ControlModelType, HackedImageRNG
23
- from scripts.controlnet_ui.controlnet_ui_group import ControlNetUiGroup, UiControlNetUnit
24
- from scripts.logging import logger
25
- from modules.processing import StableDiffusionProcessingImg2Img, StableDiffusionProcessingTxt2Img
26
- from modules.images import save_image
27
- from scripts.infotext import Infotext
28
-
29
- import cv2
30
- import numpy as np
31
- import torch
32
-
33
- from pathlib import Path
34
- from PIL import Image, ImageFilter, ImageOps
35
- from scripts.lvminthin import lvmin_thin, nake_nms
36
- from scripts.processor import model_free_preprocessors
37
- from scripts.controlnet_model_guess import build_model_by_guess
38
-
39
-
40
- gradio_compat = True
41
- try:
42
- from distutils.version import LooseVersion
43
- from importlib_metadata import version
44
- if LooseVersion(version("gradio")) < LooseVersion("3.10"):
45
- gradio_compat = False
46
- except ImportError:
47
- pass
48
-
49
-
50
- # Gradio 3.32 bug fix
51
- import tempfile
52
- gradio_tempfile_path = os.path.join(tempfile.gettempdir(), 'gradio')
53
- os.makedirs(gradio_tempfile_path, exist_ok=True)
54
-
55
-
56
- def clear_all_secondary_control_models():
57
- clear_all_lllite()
58
- clear_all_ip_adapter()
59
-
60
-
61
- def find_closest_lora_model_name(search: str):
62
- if not search:
63
- return None
64
- if search in global_state.cn_models:
65
- return search
66
- search = search.lower()
67
- if search in global_state.cn_models_names:
68
- return global_state.cn_models_names.get(search)
69
- applicable = [name for name in global_state.cn_models_names.keys()
70
- if search in name.lower()]
71
- if not applicable:
72
- return None
73
- applicable = sorted(applicable, key=lambda name: len(name))
74
- return global_state.cn_models_names[applicable[0]]
75
-
76
-
77
- def swap_img2img_pipeline(p: processing.StableDiffusionProcessingImg2Img):
78
- p.__class__ = processing.StableDiffusionProcessingTxt2Img
79
- dummy = processing.StableDiffusionProcessingTxt2Img()
80
- for k,v in dummy.__dict__.items():
81
- if hasattr(p, k):
82
- continue
83
- setattr(p, k, v)
84
-
85
-
86
- global_state.update_cn_models()
87
-
88
-
89
- def image_dict_from_any(image) -> Optional[Dict[str, np.ndarray]]:
90
- if image is None:
91
- return None
92
-
93
- if isinstance(image, (tuple, list)):
94
- image = {'image': image[0], 'mask': image[1]}
95
- elif not isinstance(image, dict):
96
- image = {'image': image, 'mask': None}
97
- else: # type(image) is dict
98
- # copy to enable modifying the dict and prevent response serialization error
99
- image = dict(image)
100
-
101
- if isinstance(image['image'], str):
102
- if os.path.exists(image['image']):
103
- image['image'] = np.array(Image.open(image['image'])).astype('uint8')
104
- elif image['image']:
105
- image['image'] = external_code.to_base64_nparray(image['image'])
106
- else:
107
- image['image'] = None
108
-
109
- # If there is no image, return image with None image and None mask
110
- if image['image'] is None:
111
- image['mask'] = None
112
- return image
113
-
114
- if isinstance(image['mask'], str):
115
- if os.path.exists(image['mask']):
116
- image['mask'] = np.array(Image.open(image['mask'])).astype('uint8')
117
- elif image['mask']:
118
- image['mask'] = external_code.to_base64_nparray(image['mask'])
119
- else:
120
- image['mask'] = np.zeros_like(image['image'], dtype=np.uint8)
121
- elif image['mask'] is None:
122
- image['mask'] = np.zeros_like(image['image'], dtype=np.uint8)
123
-
124
- return image
125
-
126
-
127
- def image_has_mask(input_image: np.ndarray) -> bool:
128
- """
129
- Determine if an image has an alpha channel (mask) that is not empty.
130
-
131
- The function checks if the input image has three dimensions (height, width, channels),
132
- and if the third dimension (channel dimension) is of size 4 (presumably RGB + alpha).
133
- Then it checks if the maximum value in the alpha channel is greater than 127. This is
134
- presumably to check if there is any non-transparent (or semi-transparent) pixel in the
135
- image. A pixel is considered non-transparent if its alpha value is above 127.
136
-
137
- Args:
138
- input_image (np.ndarray): A 3D numpy array representing an image. The dimensions
139
- should represent [height, width, channels].
140
-
141
- Returns:
142
- bool: True if the image has a non-empty alpha channel, False otherwise.
143
- """
144
- return (
145
- input_image.ndim == 3 and
146
- input_image.shape[2] == 4 and
147
- np.max(input_image[:, :, 3]) > 127
148
- )
149
-
150
-
151
- def prepare_mask(
152
- mask: Image.Image, p: processing.StableDiffusionProcessing
153
- ) -> Image.Image:
154
- """
155
- Prepare an image mask for the inpainting process.
156
-
157
- This function takes as input a PIL Image object and an instance of the
158
- StableDiffusionProcessing class, and performs the following steps to prepare the mask:
159
-
160
- 1. Convert the mask to grayscale (mode "L").
161
- 2. If the 'inpainting_mask_invert' attribute of the processing instance is True,
162
- invert the mask colors.
163
- 3. If the 'mask_blur' attribute of the processing instance is greater than 0,
164
- apply a Gaussian blur to the mask with a radius equal to 'mask_blur'.
165
-
166
- Args:
167
- mask (Image.Image): The input mask as a PIL Image object.
168
- p (processing.StableDiffusionProcessing): An instance of the StableDiffusionProcessing class
169
- containing the processing parameters.
170
-
171
- Returns:
172
- mask (Image.Image): The prepared mask as a PIL Image object.
173
- """
174
- mask = mask.convert("L")
175
- if getattr(p, "inpainting_mask_invert", False):
176
- mask = ImageOps.invert(mask)
177
-
178
- if hasattr(p, 'mask_blur_x'):
179
- if getattr(p, "mask_blur_x", 0) > 0:
180
- np_mask = np.array(mask)
181
- kernel_size = 2 * int(2.5 * p.mask_blur_x + 0.5) + 1
182
- np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), p.mask_blur_x)
183
- mask = Image.fromarray(np_mask)
184
- if getattr(p, "mask_blur_y", 0) > 0:
185
- np_mask = np.array(mask)
186
- kernel_size = 2 * int(2.5 * p.mask_blur_y + 0.5) + 1
187
- np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), p.mask_blur_y)
188
- mask = Image.fromarray(np_mask)
189
- else:
190
- if getattr(p, "mask_blur", 0) > 0:
191
- mask = mask.filter(ImageFilter.GaussianBlur(p.mask_blur))
192
-
193
- return mask
194
-
195
-
196
- def set_numpy_seed(p: processing.StableDiffusionProcessing) -> Optional[int]:
197
- """
198
- Set the random seed for NumPy based on the provided parameters.
199
-
200
- Args:
201
- p (processing.StableDiffusionProcessing): The instance of the StableDiffusionProcessing class.
202
-
203
- Returns:
204
- Optional[int]: The computed random seed if successful, or None if an exception occurs.
205
-
206
- This function sets the random seed for NumPy using the seed and subseed values from the given instance of
207
- StableDiffusionProcessing. If either seed or subseed is -1, it uses the first value from `all_seeds`.
208
- Otherwise, it takes the maximum of the provided seed value and 0.
209
-
210
- The final random seed is computed by adding the seed and subseed values, applying a bitwise AND operation
211
- with 0xFFFFFFFF to ensure it fits within a 32-bit integer.
212
- """
213
- try:
214
- tmp_seed = int(p.all_seeds[0] if p.seed == -1 else max(int(p.seed), 0))
215
- tmp_subseed = int(p.all_seeds[0] if p.subseed == -1 else max(int(p.subseed), 0))
216
- seed = (tmp_seed + tmp_subseed) & 0xFFFFFFFF
217
- np.random.seed(seed)
218
- return seed
219
- except Exception as e:
220
- logger.warning(e)
221
- logger.warning('Warning: Failed to use consistent random seed.')
222
- return None
223
-
224
-
225
- class Script(scripts.Script, metaclass=(
226
- utils.TimeMeta if logger.level == logging.DEBUG else type)):
227
-
228
- model_cache = OrderedDict()
229
-
230
- def __init__(self) -> None:
231
- super().__init__()
232
- self.latest_network = None
233
- self.preprocessor = global_state.cache_preprocessors(global_state.cn_preprocessor_modules)
234
- self.unloadable = global_state.cn_preprocessor_unloadable
235
- self.input_image = None
236
- self.latest_model_hash = ""
237
- self.enabled_units = []
238
- self.detected_map = []
239
- self.post_processors = []
240
- self.noise_modifier = None
241
- batch_hijack.instance.process_batch_callbacks.append(self.batch_tab_process)
242
- batch_hijack.instance.process_batch_each_callbacks.append(self.batch_tab_process_each)
243
- batch_hijack.instance.postprocess_batch_each_callbacks.insert(0, self.batch_tab_postprocess_each)
244
- batch_hijack.instance.postprocess_batch_callbacks.insert(0, self.batch_tab_postprocess)
245
-
246
- def title(self):
247
- return "ControlNet"
248
-
249
- def show(self, is_img2img):
250
- return scripts.AlwaysVisible
251
-
252
- @staticmethod
253
- def get_default_ui_unit(is_ui=True):
254
- cls = UiControlNetUnit if is_ui else external_code.ControlNetUnit
255
- return cls(
256
- enabled=False,
257
- module="none",
258
- model="None"
259
- )
260
-
261
- def uigroup(self, tabname: str, is_img2img: bool, elem_id_tabname: str) -> Tuple[ControlNetUiGroup, gr.State]:
262
- group = ControlNetUiGroup(
263
- gradio_compat,
264
- Script.get_default_ui_unit(),
265
- self.preprocessor,
266
- )
267
- group.render(tabname, elem_id_tabname, is_img2img)
268
- group.register_callbacks(is_img2img)
269
- return group, group.render_and_register_unit(tabname, is_img2img)
270
-
271
- def ui(self, is_img2img):
272
- """this function should create gradio UI elements. See https://gradio.app/docs/#components
273
- The return value should be an array of all components that are used in processing.
274
- Values of those returned components will be passed to run() and process() functions.
275
- """
276
- infotext = Infotext()
277
-
278
- controls = ()
279
- max_models = shared.opts.data.get("control_net_unit_count", 3)
280
- elem_id_tabname = ("img2img" if is_img2img else "txt2img") + "_controlnet"
281
- with gr.Group(elem_id=elem_id_tabname):
282
- with gr.Accordion(f"ControlNet {controlnet_version.version_flag}", open = False, elem_id="controlnet"):
283
- if max_models > 1:
284
- with gr.Tabs(elem_id=f"{elem_id_tabname}_tabs"):
285
- for i in range(max_models):
286
- with gr.Tab(f"ControlNet Unit {i}",
287
- elem_classes=['cnet-unit-tab']):
288
- group, state = self.uigroup(f"ControlNet-{i}", is_img2img, elem_id_tabname)
289
- infotext.register_unit(i, group)
290
- controls += (state,)
291
- else:
292
- with gr.Column():
293
- group, state = self.uigroup(f"ControlNet", is_img2img, elem_id_tabname)
294
- infotext.register_unit(0, group)
295
- controls += (state,)
296
-
297
- if shared.opts.data.get("control_net_sync_field_args", True):
298
- self.infotext_fields = infotext.infotext_fields
299
- self.paste_field_names = infotext.paste_field_names
300
-
301
- return controls
302
-
303
- @staticmethod
304
- def clear_control_model_cache():
305
- Script.model_cache.clear()
306
- gc.collect()
307
- devices.torch_gc()
308
-
309
- @staticmethod
310
- def load_control_model(p, unet, model):
311
- if model in Script.model_cache:
312
- logger.info(f"Loading model from cache: {model}")
313
- return Script.model_cache[model]
314
-
315
- # Remove model from cache to clear space before building another model
316
- if len(Script.model_cache) > 0 and len(Script.model_cache) >= shared.opts.data.get("control_net_model_cache_size", 2):
317
- Script.model_cache.popitem(last=False)
318
- gc.collect()
319
- devices.torch_gc()
320
-
321
- model_net = Script.build_control_model(p, unet, model)
322
-
323
- if shared.opts.data.get("control_net_model_cache_size", 2) > 0:
324
- Script.model_cache[model] = model_net
325
-
326
- return model_net
327
-
328
- @staticmethod
329
- def build_control_model(p, unet, model):
330
- if model is None or model == 'None':
331
- raise RuntimeError(f"You have not selected any ControlNet Model.")
332
-
333
- model_path = global_state.cn_models.get(model, None)
334
- if model_path is None:
335
- model = find_closest_lora_model_name(model)
336
- model_path = global_state.cn_models.get(model, None)
337
-
338
- if model_path is None:
339
- raise RuntimeError(f"model not found: {model}")
340
-
341
- # trim '"' at start/end
342
- if model_path.startswith("\"") and model_path.endswith("\""):
343
- model_path = model_path[1:-1]
344
-
345
- if not os.path.exists(model_path):
346
- raise ValueError(f"file not found: {model_path}")
347
-
348
- logger.info(f"Loading model: {model}")
349
- state_dict = load_state_dict(model_path)
350
- network = build_model_by_guess(state_dict, unet, model_path)
351
- network.to('cpu', dtype=p.sd_model.dtype)
352
- logger.info(f"ControlNet model {model} loaded.")
353
- return network
354
-
355
- @staticmethod
356
- def get_remote_call(p, attribute, default=None, idx=0, strict=False, force=False):
357
- if not force and not shared.opts.data.get("control_net_allow_script_control", False):
358
- return default
359
-
360
- def get_element(obj, strict=False):
361
- if not isinstance(obj, list):
362
- return obj if not strict or idx == 0 else None
363
- elif idx < len(obj):
364
- return obj[idx]
365
- else:
366
- return None
367
-
368
- attribute_value = get_element(getattr(p, attribute, None), strict)
369
- default_value = get_element(default)
370
- return attribute_value if attribute_value is not None else default_value
371
-
372
- @staticmethod
373
- def parse_remote_call(p, unit: external_code.ControlNetUnit, idx):
374
- selector = Script.get_remote_call
375
-
376
- unit.enabled = selector(p, "control_net_enabled", unit.enabled, idx, strict=True)
377
- unit.module = selector(p, "control_net_module", unit.module, idx)
378
- unit.model = selector(p, "control_net_model", unit.model, idx)
379
- unit.weight = selector(p, "control_net_weight", unit.weight, idx)
380
- unit.image = selector(p, "control_net_image", unit.image, idx)
381
- unit.resize_mode = selector(p, "control_net_resize_mode", unit.resize_mode, idx)
382
- unit.low_vram = selector(p, "control_net_lowvram", unit.low_vram, idx)
383
- unit.processor_res = selector(p, "control_net_pres", unit.processor_res, idx)
384
- unit.threshold_a = selector(p, "control_net_pthr_a", unit.threshold_a, idx)
385
- unit.threshold_b = selector(p, "control_net_pthr_b", unit.threshold_b, idx)
386
- unit.guidance_start = selector(p, "control_net_guidance_start", unit.guidance_start, idx)
387
- unit.guidance_end = selector(p, "control_net_guidance_end", unit.guidance_end, idx)
388
- # Backward compatibility. See https://github.com/Mikubill/sd-webui-controlnet/issues/1740
389
- # for more details.
390
- unit.guidance_end = selector(p, "control_net_guidance_strength", unit.guidance_end, idx)
391
- unit.control_mode = selector(p, "control_net_control_mode", unit.control_mode, idx)
392
- unit.pixel_perfect = selector(p, "control_net_pixel_perfect", unit.pixel_perfect, idx)
393
-
394
- return unit
395
-
396
- @staticmethod
397
- def detectmap_proc(detected_map, module, resize_mode, h, w):
398
-
399
- if 'inpaint' in module:
400
- detected_map = detected_map.astype(np.float32)
401
- else:
402
- detected_map = HWC3(detected_map)
403
-
404
- def safe_numpy(x):
405
- # A very safe method to make sure that Apple/Mac works
406
- y = x
407
-
408
- # below is very boring but do not change these. If you change these Apple or Mac may fail.
409
- y = y.copy()
410
- y = np.ascontiguousarray(y)
411
- y = y.copy()
412
- return y
413
-
414
- def get_pytorch_control(x):
415
- # A very safe method to make sure that Apple/Mac works
416
- y = x
417
-
418
- # below is very boring but do not change these. If you change these Apple or Mac may fail.
419
- y = torch.from_numpy(y)
420
- y = y.float() / 255.0
421
- y = rearrange(y, 'h w c -> 1 c h w')
422
- y = y.clone()
423
- y = y.to(devices.get_device_for("controlnet"))
424
- y = y.clone()
425
- return y
426
-
427
- def high_quality_resize(x, size):
428
- # Written by lvmin
429
- # Super high-quality control map up-scaling, considering binary, seg, and one-pixel edges
430
-
431
- inpaint_mask = None
432
- if x.ndim == 3 and x.shape[2] == 4:
433
- inpaint_mask = x[:, :, 3]
434
- x = x[:, :, 0:3]
435
-
436
- if x.shape[0] != size[1] or x.shape[1] != size[0]:
437
- new_size_is_smaller = (size[0] * size[1]) < (x.shape[0] * x.shape[1])
438
- new_size_is_bigger = (size[0] * size[1]) > (x.shape[0] * x.shape[1])
439
- unique_color_count = len(get_unique_axis0(x.reshape(-1, x.shape[2])))
440
- is_one_pixel_edge = False
441
- is_binary = False
442
- if unique_color_count == 2:
443
- is_binary = np.min(x) < 16 and np.max(x) > 240
444
- if is_binary:
445
- xc = x
446
- xc = cv2.erode(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
447
- xc = cv2.dilate(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
448
- one_pixel_edge_count = np.where(xc < x)[0].shape[0]
449
- all_edge_count = np.where(x > 127)[0].shape[0]
450
- is_one_pixel_edge = one_pixel_edge_count * 2 > all_edge_count
451
-
452
- if 2 < unique_color_count < 200:
453
- interpolation = cv2.INTER_NEAREST
454
- elif new_size_is_smaller:
455
- interpolation = cv2.INTER_AREA
456
- else:
457
- interpolation = cv2.INTER_CUBIC # Must be CUBIC because we now use nms. NEVER CHANGE THIS
458
-
459
- y = cv2.resize(x, size, interpolation=interpolation)
460
- if inpaint_mask is not None:
461
- inpaint_mask = cv2.resize(inpaint_mask, size, interpolation=interpolation)
462
-
463
- if is_binary:
464
- y = np.mean(y.astype(np.float32), axis=2).clip(0, 255).astype(np.uint8)
465
- if is_one_pixel_edge:
466
- y = nake_nms(y)
467
- _, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
468
- y = lvmin_thin(y, prunings=new_size_is_bigger)
469
- else:
470
- _, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
471
- y = np.stack([y] * 3, axis=2)
472
- else:
473
- y = x
474
-
475
- if inpaint_mask is not None:
476
- inpaint_mask = (inpaint_mask > 127).astype(np.float32) * 255.0
477
- inpaint_mask = inpaint_mask[:, :, None].clip(0, 255).astype(np.uint8)
478
- y = np.concatenate([y, inpaint_mask], axis=2)
479
-
480
- return y
481
-
482
- if resize_mode == external_code.ResizeMode.RESIZE:
483
- detected_map = high_quality_resize(detected_map, (w, h))
484
- detected_map = safe_numpy(detected_map)
485
- return get_pytorch_control(detected_map), detected_map
486
-
487
- old_h, old_w, _ = detected_map.shape
488
- old_w = float(old_w)
489
- old_h = float(old_h)
490
- k0 = float(h) / old_h
491
- k1 = float(w) / old_w
492
-
493
- safeint = lambda x: int(np.round(x))
494
-
495
- if resize_mode == external_code.ResizeMode.OUTER_FIT:
496
- k = min(k0, k1)
497
- borders = np.concatenate([detected_map[0, :, :], detected_map[-1, :, :], detected_map[:, 0, :], detected_map[:, -1, :]], axis=0)
498
- high_quality_border_color = np.median(borders, axis=0).astype(detected_map.dtype)
499
- if len(high_quality_border_color) == 4:
500
- # Inpaint hijack
501
- high_quality_border_color[3] = 255
502
- high_quality_background = np.tile(high_quality_border_color[None, None], [h, w, 1])
503
- detected_map = high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
504
- new_h, new_w, _ = detected_map.shape
505
- pad_h = max(0, (h - new_h) // 2)
506
- pad_w = max(0, (w - new_w) // 2)
507
- high_quality_background[pad_h:pad_h + new_h, pad_w:pad_w + new_w] = detected_map
508
- detected_map = high_quality_background
509
- detected_map = safe_numpy(detected_map)
510
- return get_pytorch_control(detected_map), detected_map
511
- else:
512
- k = max(k0, k1)
513
- detected_map = high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
514
- new_h, new_w, _ = detected_map.shape
515
- pad_h = max(0, (new_h - h) // 2)
516
- pad_w = max(0, (new_w - w) // 2)
517
- detected_map = detected_map[pad_h:pad_h+h, pad_w:pad_w+w]
518
- detected_map = safe_numpy(detected_map)
519
- return get_pytorch_control(detected_map), detected_map
520
-
521
- @staticmethod
522
- def get_enabled_units(p):
523
- units = external_code.get_all_units_in_processing(p)
524
- if len(units) == 0:
525
- # fill a null group
526
- remote_unit = Script.parse_remote_call(p, Script.get_default_ui_unit(), 0)
527
- if remote_unit.enabled:
528
- units.append(remote_unit)
529
-
530
- enabled_units = [
531
- copy(local_unit)
532
- for idx, unit in enumerate(units)
533
- for local_unit in (Script.parse_remote_call(p, unit, idx),)
534
- if local_unit.enabled
535
- ]
536
- Infotext.write_infotext(enabled_units, p)
537
- return enabled_units
538
-
539
- @staticmethod
540
- def choose_input_image(
541
- p: processing.StableDiffusionProcessing,
542
- unit: external_code.ControlNetUnit,
543
- idx: int
544
- ) -> Tuple[np.ndarray, bool]:
545
- """ Choose input image from following sources with descending priority:
546
- - p.image_control: [Deprecated] Lagacy way to pass image to controlnet.
547
- - p.control_net_input_image: [Deprecated] Lagacy way to pass image to controlnet.
548
- - unit.image:
549
- - ControlNet tab input image.
550
- - Input image from API call.
551
- - p.init_images: A1111 img2img tab input image.
552
-
553
- Returns:
554
- - The input image in ndarray form.
555
- - Whether input image is from A1111.
556
- """
557
- image_from_a1111 = False
558
-
559
- p_input_image = Script.get_remote_call(p, "control_net_input_image", None, idx)
560
- image = image_dict_from_any(unit.image)
561
-
562
- if batch_hijack.instance.is_batch and getattr(p, "image_control", None) is not None:
563
- logger.warning("Warn: Using legacy field 'p.image_control'.")
564
- input_image = HWC3(np.asarray(p.image_control))
565
- elif p_input_image is not None:
566
- logger.warning("Warn: Using legacy field 'p.controlnet_input_image'")
567
- if isinstance(p_input_image, dict) and "mask" in p_input_image and "image" in p_input_image:
568
- color = HWC3(np.asarray(p_input_image['image']))
569
- alpha = np.asarray(p_input_image['mask'])[..., None]
570
- input_image = np.concatenate([color, alpha], axis=2)
571
- else:
572
- input_image = HWC3(np.asarray(p_input_image))
573
- elif image is not None:
574
- while len(image['mask'].shape) < 3:
575
- image['mask'] = image['mask'][..., np.newaxis]
576
-
577
- # Need to check the image for API compatibility
578
- if isinstance(image['image'], str):
579
- from modules.api.api import decode_base64_to_image
580
- input_image = HWC3(np.asarray(decode_base64_to_image(image['image'])))
581
- else:
582
- input_image = HWC3(image['image'])
583
-
584
- have_mask = 'mask' in image and not (
585
- (image['mask'][:, :, 0] <= 5).all() or
586
- (image['mask'][:, :, 0] >= 250).all()
587
- )
588
-
589
- if 'inpaint' in unit.module:
590
- logger.info("using inpaint as input")
591
- color = HWC3(image['image'])
592
- if have_mask:
593
- alpha = image['mask'][:, :, 0:1]
594
- else:
595
- alpha = np.zeros_like(color)[:, :, 0:1]
596
- input_image = np.concatenate([color, alpha], axis=2)
597
- else:
598
- if have_mask and not shared.opts.data.get("controlnet_ignore_noninpaint_mask", False):
599
- logger.info("using mask as input")
600
- input_image = HWC3(image['mask'][:, :, 0])
601
- unit.module = 'none' # Always use black bg and white line
602
- else:
603
- # use img2img init_image as default
604
- input_image = getattr(p, "init_images", [None])[0]
605
- if input_image is None:
606
- if batch_hijack.instance.is_batch:
607
- shared.state.interrupted = True
608
- raise ValueError('controlnet is enabled but no input image is given')
609
-
610
- input_image = HWC3(np.asarray(input_image))
611
- image_from_a1111 = True
612
-
613
- assert isinstance(input_image, np.ndarray)
614
- return input_image, image_from_a1111
615
-
616
- @staticmethod
617
- def bound_check_params(unit: external_code.ControlNetUnit) -> None:
618
- """
619
- Checks and corrects negative parameters in ControlNetUnit 'unit'.
620
- Parameters 'processor_res', 'threshold_a', 'threshold_b' are reset to
621
- their default values if negative.
622
-
623
- Args:
624
- unit (external_code.ControlNetUnit): The ControlNetUnit instance to check.
625
- """
626
- cfg = preprocessor_sliders_config.get(
627
- global_state.get_module_basename(unit.module), [])
628
- defaults = {
629
- param: cfg_default['value']
630
- for param, cfg_default in zip(
631
- ("processor_res", 'threshold_a', 'threshold_b'), cfg)
632
- if cfg_default is not None
633
- }
634
- for param, default_value in defaults.items():
635
- value = getattr(unit, param)
636
- if value < 0:
637
- setattr(unit, param, default_value)
638
- logger.warning(f'[{unit.module}.{param}] Invalid value({value}), using default value {default_value}.')
639
-
640
- def controlnet_main_entry(self, p):
641
- sd_ldm = p.sd_model
642
- unet = sd_ldm.model.diffusion_model
643
- self.noise_modifier = None
644
-
645
- setattr(p, 'controlnet_control_loras', [])
646
-
647
- if self.latest_network is not None:
648
- # always restore (~0.05s)
649
- self.latest_network.restore()
650
-
651
- # always clear (~0.05s)
652
- clear_all_secondary_control_models()
653
-
654
- if not batch_hijack.instance.is_batch:
655
- self.enabled_units = Script.get_enabled_units(p)
656
-
657
- if len(self.enabled_units) == 0:
658
- self.latest_network = None
659
- return
660
-
661
- detected_maps = []
662
- forward_params = []
663
- post_processors = []
664
-
665
- # cache stuff
666
- if self.latest_model_hash != p.sd_model.sd_model_hash:
667
- Script.clear_control_model_cache()
668
-
669
- for idx, unit in enumerate(self.enabled_units):
670
- unit.module = global_state.get_module_basename(unit.module)
671
-
672
- # unload unused preproc
673
- module_list = [unit.module for unit in self.enabled_units]
674
- for key in self.unloadable:
675
- if key not in module_list:
676
- self.unloadable.get(key, lambda:None)()
677
-
678
- self.latest_model_hash = p.sd_model.sd_model_hash
679
- for idx, unit in enumerate(self.enabled_units):
680
- Script.bound_check_params(unit)
681
-
682
- resize_mode = external_code.resize_mode_from_value(unit.resize_mode)
683
- control_mode = external_code.control_mode_from_value(unit.control_mode)
684
-
685
- if unit.module in model_free_preprocessors:
686
- model_net = None
687
- else:
688
- model_net = Script.load_control_model(p, unet, unit.model)
689
- model_net.reset()
690
-
691
- if getattr(model_net, 'is_control_lora', False):
692
- control_lora = model_net.control_model
693
- bind_control_lora(unet, control_lora)
694
- p.controlnet_control_loras.append(control_lora)
695
-
696
- input_image, image_from_a1111 = Script.choose_input_image(p, unit, idx)
697
- if image_from_a1111:
698
- a1111_i2i_resize_mode = getattr(p, "resize_mode", None)
699
- if a1111_i2i_resize_mode is not None:
700
- resize_mode = external_code.resize_mode_from_value(a1111_i2i_resize_mode)
701
-
702
- a1111_mask_image : Optional[Image.Image] = getattr(p, "image_mask", None)
703
- if 'inpaint' in unit.module and not image_has_mask(input_image) and a1111_mask_image is not None:
704
- a1111_mask = np.array(prepare_mask(a1111_mask_image, p))
705
- if a1111_mask.ndim == 2:
706
- if a1111_mask.shape[0] == input_image.shape[0]:
707
- if a1111_mask.shape[1] == input_image.shape[1]:
708
- input_image = np.concatenate([input_image[:, :, 0:3], a1111_mask[:, :, None]], axis=2)
709
- a1111_i2i_resize_mode = getattr(p, "resize_mode", None)
710
- if a1111_i2i_resize_mode is not None:
711
- resize_mode = external_code.resize_mode_from_value(a1111_i2i_resize_mode)
712
-
713
- if 'reference' not in unit.module and issubclass(type(p), StableDiffusionProcessingImg2Img) \
714
- and p.inpaint_full_res and a1111_mask_image is not None:
715
- logger.debug("A1111 inpaint mask START")
716
- input_image = [input_image[:, :, i] for i in range(input_image.shape[2])]
717
- input_image = [Image.fromarray(x) for x in input_image]
718
-
719
- mask = prepare_mask(a1111_mask_image, p)
720
-
721
- crop_region = masking.get_crop_region(np.array(mask), p.inpaint_full_res_padding)
722
- crop_region = masking.expand_crop_region(crop_region, p.width, p.height, mask.width, mask.height)
723
-
724
- input_image = [
725
- images.resize_image(resize_mode.int_value(), i, mask.width, mask.height)
726
- for i in input_image
727
- ]
728
-
729
- input_image = [x.crop(crop_region) for x in input_image]
730
- input_image = [
731
- images.resize_image(external_code.ResizeMode.OUTER_FIT.int_value(), x, p.width, p.height)
732
- for x in input_image
733
- ]
734
-
735
- input_image = [np.asarray(x)[:, :, 0] for x in input_image]
736
- input_image = np.stack(input_image, axis=2)
737
- logger.debug("A1111 inpaint mask END")
738
-
739
- if 'inpaint_only' == unit.module and issubclass(type(p), StableDiffusionProcessingImg2Img) and p.image_mask is not None:
740
- logger.warning('A1111 inpaint and ControlNet inpaint duplicated. ControlNet support enabled.')
741
- unit.module = 'inpaint'
742
-
743
- # safe numpy
744
- logger.debug("Safe numpy convertion START")
745
- input_image = np.ascontiguousarray(input_image.copy()).copy()
746
- logger.debug("Safe numpy convertion END")
747
-
748
- logger.info(f"Loading preprocessor: {unit.module}")
749
- preprocessor = self.preprocessor[unit.module]
750
-
751
- high_res_fix = isinstance(p, StableDiffusionProcessingTxt2Img) and getattr(p, 'enable_hr', False)
752
-
753
- h = (p.height // 8) * 8
754
- w = (p.width // 8) * 8
755
-
756
- if high_res_fix:
757
- if p.hr_resize_x == 0 and p.hr_resize_y == 0:
758
- hr_y = int(p.height * p.hr_scale)
759
- hr_x = int(p.width * p.hr_scale)
760
- else:
761
- hr_y, hr_x = p.hr_resize_y, p.hr_resize_x
762
- hr_y = (hr_y // 8) * 8
763
- hr_x = (hr_x // 8) * 8
764
- else:
765
- hr_y = h
766
- hr_x = w
767
-
768
- if unit.module == 'inpaint_only+lama' and resize_mode == external_code.ResizeMode.OUTER_FIT:
769
- # inpaint_only+lama is special and required outpaint fix
770
- _, input_image = Script.detectmap_proc(input_image, unit.module, resize_mode, hr_y, hr_x)
771
-
772
- control_model_type = ControlModelType.ControlNet
773
- global_average_pooling = False
774
-
775
- if 'reference' in unit.module:
776
- control_model_type = ControlModelType.AttentionInjection
777
- elif 'revision' in unit.module:
778
- control_model_type = ControlModelType.ReVision
779
- elif hasattr(model_net, 'control_model') and (isinstance(model_net.control_model, Adapter) or isinstance(model_net.control_model, Adapter_light)):
780
- control_model_type = ControlModelType.T2I_Adapter
781
- elif hasattr(model_net, 'control_model') and isinstance(model_net.control_model, StyleAdapter):
782
- control_model_type = ControlModelType.T2I_StyleAdapter
783
- elif isinstance(model_net, PlugableIPAdapter):
784
- control_model_type = ControlModelType.IPAdapter
785
- elif isinstance(model_net, PlugableControlLLLite):
786
- control_model_type = ControlModelType.Controlllite
787
-
788
- if control_model_type is ControlModelType.ControlNet:
789
- global_average_pooling = model_net.control_model.global_average_pooling
790
-
791
- preprocessor_resolution = unit.processor_res
792
- if unit.pixel_perfect:
793
- preprocessor_resolution = external_code.pixel_perfect_resolution(
794
- input_image,
795
- target_H=h,
796
- target_W=w,
797
- resize_mode=resize_mode
798
- )
799
-
800
- logger.info(f'preprocessor resolution = {preprocessor_resolution}')
801
- # Preprocessor result may depend on numpy random operations, use the
802
- # random seed in `StableDiffusionProcessing` to make the
803
- # preprocessor result reproducable.
804
- # Currently following preprocessors use numpy random:
805
- # - shuffle
806
- seed = set_numpy_seed(p)
807
- logger.debug(f"Use numpy seed {seed}.")
808
- detected_map, is_image = preprocessor(
809
- input_image,
810
- res=preprocessor_resolution,
811
- thr_a=unit.threshold_a,
812
- thr_b=unit.threshold_b,
813
- )
814
-
815
- if high_res_fix:
816
- if is_image:
817
- hr_control, hr_detected_map = Script.detectmap_proc(detected_map, unit.module, resize_mode, hr_y, hr_x)
818
- detected_maps.append((hr_detected_map, unit.module))
819
- else:
820
- hr_control = detected_map
821
- else:
822
- hr_control = None
823
-
824
- if is_image:
825
- control, detected_map = Script.detectmap_proc(detected_map, unit.module, resize_mode, h, w)
826
- detected_maps.append((detected_map, unit.module))
827
- else:
828
- control = detected_map
829
- detected_maps.append((input_image, unit.module))
830
-
831
- if control_model_type == ControlModelType.T2I_StyleAdapter:
832
- control = control['last_hidden_state']
833
-
834
- if control_model_type == ControlModelType.ReVision:
835
- control = control['image_embeds']
836
-
837
- preprocessor_dict = dict(
838
- name=unit.module,
839
- preprocessor_resolution=preprocessor_resolution,
840
- threshold_a=unit.threshold_a,
841
- threshold_b=unit.threshold_b
842
- )
843
-
844
- forward_param = ControlParams(
845
- control_model=model_net,
846
- preprocessor=preprocessor_dict,
847
- hint_cond=control,
848
- weight=unit.weight,
849
- guidance_stopped=False,
850
- start_guidance_percent=unit.guidance_start,
851
- stop_guidance_percent=unit.guidance_end,
852
- advanced_weighting=None,
853
- control_model_type=control_model_type,
854
- global_average_pooling=global_average_pooling,
855
- hr_hint_cond=hr_control,
856
- soft_injection=control_mode != external_code.ControlMode.BALANCED,
857
- cfg_injection=control_mode == external_code.ControlMode.CONTROL,
858
- )
859
- forward_params.append(forward_param)
860
-
861
- if 'inpaint_only' in unit.module:
862
- final_inpaint_feed = hr_control if hr_control is not None else control
863
- final_inpaint_feed = final_inpaint_feed.detach().cpu().numpy()
864
- final_inpaint_feed = np.ascontiguousarray(final_inpaint_feed).copy()
865
- final_inpaint_mask = final_inpaint_feed[0, 3, :, :].astype(np.float32)
866
- final_inpaint_raw = final_inpaint_feed[0, :3].astype(np.float32)
867
- sigma = shared.opts.data.get("control_net_inpaint_blur_sigma", 7)
868
- final_inpaint_mask = cv2.dilate(final_inpaint_mask, np.ones((sigma, sigma), dtype=np.uint8))
869
- final_inpaint_mask = cv2.blur(final_inpaint_mask, (sigma, sigma))[None]
870
- _, Hmask, Wmask = final_inpaint_mask.shape
871
- final_inpaint_raw = torch.from_numpy(np.ascontiguousarray(final_inpaint_raw).copy())
872
- final_inpaint_mask = torch.from_numpy(np.ascontiguousarray(final_inpaint_mask).copy())
873
-
874
- def inpaint_only_post_processing(x):
875
- _, H, W = x.shape
876
- if Hmask != H or Wmask != W:
877
- logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
878
- return x
879
- r = final_inpaint_raw.to(x.dtype).to(x.device)
880
- m = final_inpaint_mask.to(x.dtype).to(x.device)
881
- y = m * x.clip(0, 1) + (1 - m) * r
882
- y = y.clip(0, 1)
883
- return y
884
-
885
- post_processors.append(inpaint_only_post_processing)
886
-
887
- if 'recolor' in unit.module:
888
- final_feed = hr_control if hr_control is not None else control
889
- final_feed = final_feed.detach().cpu().numpy()
890
- final_feed = np.ascontiguousarray(final_feed).copy()
891
- final_feed = final_feed[0, 0, :, :].astype(np.float32)
892
- final_feed = (final_feed * 255).clip(0, 255).astype(np.uint8)
893
- Hfeed, Wfeed = final_feed.shape
894
-
895
- if 'luminance' in unit.module:
896
-
897
- def recolor_luminance_post_processing(x):
898
- C, H, W = x.shape
899
- if Hfeed != H or Wfeed != W or C != 3:
900
- logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
901
- return x
902
- h = x.detach().cpu().numpy().transpose((1, 2, 0))
903
- h = (h * 255).clip(0, 255).astype(np.uint8)
904
- h = cv2.cvtColor(h, cv2.COLOR_RGB2LAB)
905
- h[:, :, 0] = final_feed
906
- h = cv2.cvtColor(h, cv2.COLOR_LAB2RGB)
907
- h = (h.astype(np.float32) / 255.0).transpose((2, 0, 1))
908
- y = torch.from_numpy(h).clip(0, 1).to(x)
909
- return y
910
-
911
- post_processors.append(recolor_luminance_post_processing)
912
-
913
- if 'intensity' in unit.module:
914
-
915
- def recolor_intensity_post_processing(x):
916
- C, H, W = x.shape
917
- if Hfeed != H or Wfeed != W or C != 3:
918
- logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
919
- return x
920
- h = x.detach().cpu().numpy().transpose((1, 2, 0))
921
- h = (h * 255).clip(0, 255).astype(np.uint8)
922
- h = cv2.cvtColor(h, cv2.COLOR_RGB2HSV)
923
- h[:, :, 2] = final_feed
924
- h = cv2.cvtColor(h, cv2.COLOR_HSV2RGB)
925
- h = (h.astype(np.float32) / 255.0).transpose((2, 0, 1))
926
- y = torch.from_numpy(h).clip(0, 1).to(x)
927
- return y
928
-
929
- post_processors.append(recolor_intensity_post_processing)
930
-
931
- if '+lama' in unit.module:
932
- forward_param.used_hint_cond_latent = hook.UnetHook.call_vae_using_process(p, control)
933
- self.noise_modifier = forward_param.used_hint_cond_latent
934
-
935
- del model_net
936
-
937
- is_low_vram = any(unit.low_vram for unit in self.enabled_units)
938
-
939
- self.latest_network = UnetHook(lowvram=is_low_vram)
940
- self.latest_network.hook(model=unet, sd_ldm=sd_ldm, control_params=forward_params, process=p)
941
-
942
- for param in forward_params:
943
- if param.control_model_type == ControlModelType.IPAdapter:
944
- param.control_model.hook(
945
- model=unet,
946
- clip_vision_output=param.hint_cond,
947
- weight=param.weight,
948
- dtype=torch.float32,
949
- start=param.start_guidance_percent,
950
- end=param.stop_guidance_percent
951
- )
952
- if param.control_model_type == ControlModelType.Controlllite:
953
- param.control_model.hook(
954
- model=unet,
955
- cond=param.hint_cond,
956
- weight=param.weight,
957
- start=param.start_guidance_percent,
958
- end=param.stop_guidance_percent
959
- )
960
-
961
- self.detected_map = detected_maps
962
- self.post_processors = post_processors
963
-
964
- def controlnet_hack(self, p):
965
- t = time.time()
966
- self.controlnet_main_entry(p)
967
- if len(self.enabled_units) > 0:
968
- logger.info(f'ControlNet Hooked - Time = {time.time() - t}')
969
- return
970
-
971
- @staticmethod
972
- def process_has_sdxl_refiner(p):
973
- return getattr(p, 'refiner_checkpoint', None) is not None
974
-
975
- def process(self, p, *args, **kwargs):
976
- if not Script.process_has_sdxl_refiner(p):
977
- self.controlnet_hack(p)
978
- return
979
-
980
- def before_process_batch(self, p, *args, **kwargs):
981
- if self.noise_modifier is not None:
982
- p.rng = HackedImageRNG(rng=p.rng,
983
- noise_modifier=self.noise_modifier,
984
- sd_model=p.sd_model)
985
- self.noise_modifier = None
986
- if Script.process_has_sdxl_refiner(p):
987
- self.controlnet_hack(p)
988
- return
989
-
990
- def postprocess_batch(self, p, *args, **kwargs):
991
- images = kwargs.get('images', [])
992
- for post_processor in self.post_processors:
993
- for i in range(len(images)):
994
- images[i] = post_processor(images[i])
995
- return
996
-
997
- def postprocess(self, p, processed, *args):
998
- clear_all_secondary_control_models()
999
-
1000
- self.noise_modifier = None
1001
-
1002
- for control_lora in getattr(p, 'controlnet_control_loras', []):
1003
- unbind_control_lora(control_lora)
1004
- p.controlnet_control_loras = []
1005
-
1006
- self.post_processors = []
1007
- setattr(p, 'controlnet_vae_cache', None)
1008
-
1009
- processor_params_flag = (', '.join(getattr(processed, 'extra_generation_params', []))).lower()
1010
- self.post_processors = []
1011
-
1012
- if not batch_hijack.instance.is_batch:
1013
- self.enabled_units.clear()
1014
-
1015
- if shared.opts.data.get("control_net_detectmap_autosaving", False) and self.latest_network is not None:
1016
- for detect_map, module in self.detected_map:
1017
- detectmap_dir = os.path.join(shared.opts.data.get("control_net_detectedmap_dir", ""), module)
1018
- if not os.path.isabs(detectmap_dir):
1019
- detectmap_dir = os.path.join(p.outpath_samples, detectmap_dir)
1020
- if module != "none":
1021
- os.makedirs(detectmap_dir, exist_ok=True)
1022
- img = Image.fromarray(np.ascontiguousarray(detect_map.clip(0, 255).astype(np.uint8)).copy())
1023
- save_image(img, detectmap_dir, module)
1024
-
1025
- if self.latest_network is None:
1026
- return
1027
-
1028
- if not batch_hijack.instance.is_batch:
1029
- if not shared.opts.data.get("control_net_no_detectmap", False):
1030
- if 'sd upscale' not in processor_params_flag:
1031
- if self.detected_map is not None:
1032
- for detect_map, module in self.detected_map:
1033
- if detect_map is None:
1034
- continue
1035
- detect_map = np.ascontiguousarray(detect_map.copy()).copy()
1036
- detect_map = external_code.visualize_inpaint_mask(detect_map)
1037
- processed.images.extend([
1038
- Image.fromarray(
1039
- detect_map.clip(0, 255).astype(np.uint8)
1040
- )
1041
- ])
1042
-
1043
- self.input_image = None
1044
- self.latest_network.restore()
1045
- self.latest_network = None
1046
- self.detected_map.clear()
1047
-
1048
- gc.collect()
1049
- devices.torch_gc()
1050
-
1051
- def batch_tab_process(self, p, batches, *args, **kwargs):
1052
- self.enabled_units = self.get_enabled_units(p)
1053
- for unit_i, unit in enumerate(self.enabled_units):
1054
- unit.batch_images = iter([batch[unit_i] for batch in batches])
1055
-
1056
- def batch_tab_process_each(self, p, *args, **kwargs):
1057
- for unit_i, unit in enumerate(self.enabled_units):
1058
- if getattr(unit, 'loopback', False) and batch_hijack.instance.batch_index > 0: continue
1059
-
1060
- unit.image = next(unit.batch_images)
1061
-
1062
- def batch_tab_postprocess_each(self, p, processed, *args, **kwargs):
1063
- for unit_i, unit in enumerate(self.enabled_units):
1064
- if getattr(unit, 'loopback', False):
1065
- output_images = getattr(processed, 'images', [])[processed.index_of_first_image:]
1066
- if output_images:
1067
- unit.image = np.array(output_images[0])
1068
- else:
1069
- logger.warning(f'Warning: No loopback image found for controlnet unit {unit_i}. Using control map from last batch iteration instead')
1070
-
1071
- def batch_tab_postprocess(self, p, *args, **kwargs):
1072
- self.enabled_units.clear()
1073
- self.input_image = None
1074
- if self.latest_network is None: return
1075
-
1076
- self.latest_network.restore()
1077
- self.latest_network = None
1078
- self.detected_map.clear()
1079
-
1080
-
1081
- def on_ui_settings():
1082
- section = ('control_net', "ControlNet")
1083
- shared.opts.add_option("control_net_detectedmap_dir", shared.OptionInfo(
1084
- global_state.default_detectedmap_dir, "Directory for detected maps auto saving", section=section))
1085
- shared.opts.add_option("control_net_models_path", shared.OptionInfo(
1086
- "", "Extra path to scan for ControlNet models (e.g. training output directory)", section=section))
1087
- shared.opts.add_option("control_net_modules_path", shared.OptionInfo(
1088
- "", "Path to directory containing annotator model directories (requires restart, overrides corresponding command line flag)", section=section))
1089
- shared.opts.add_option("control_net_unit_count", shared.OptionInfo(
1090
- 3, "Multi-ControlNet: ControlNet unit number (requires restart)", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}, section=section))
1091
- shared.opts.add_option("control_net_model_cache_size", shared.OptionInfo(
1092
- 1, "Model cache size (requires restart)", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}, section=section))
1093
- shared.opts.add_option("control_net_inpaint_blur_sigma", shared.OptionInfo(
1094
- 7, "ControlNet inpainting Gaussian blur sigma", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}, section=section))
1095
- shared.opts.add_option("control_net_no_high_res_fix", shared.OptionInfo(
1096
- True, "Do not apply ControlNet during highres fix", gr.Checkbox, {"interactive": True}, section=section))
1097
- shared.opts.add_option("control_net_no_detectmap", shared.OptionInfo(
1098
- False, "Do not append detectmap to output", gr.Checkbox, {"interactive": True}, section=section))
1099
- shared.opts.add_option("control_net_detectmap_autosaving", shared.OptionInfo(
1100
- False, "Allow detectmap auto saving", gr.Checkbox, {"interactive": True}, section=section))
1101
- shared.opts.add_option("control_net_allow_script_control", shared.OptionInfo(
1102
- True, "Allow other script to control this extension", gr.Checkbox, {"interactive": True}, section=section))
1103
- shared.opts.add_option("control_net_sync_field_args", shared.OptionInfo(
1104
- True, "Paste ControlNet parameters in infotext", gr.Checkbox, {"interactive": True}, section=section))
1105
- shared.opts.add_option("controlnet_show_batch_images_in_ui", shared.OptionInfo(
1106
- False, "Show batch images in gradio gallery output", gr.Checkbox, {"interactive": True}, section=section))
1107
- shared.opts.add_option("controlnet_increment_seed_during_batch", shared.OptionInfo(
1108
- False, "Increment seed after each controlnet batch iteration", gr.Checkbox, {"interactive": True}, section=section))
1109
- shared.opts.add_option("controlnet_disable_control_type", shared.OptionInfo(
1110
- False, "Disable control type selection", gr.Checkbox, {"interactive": True}, section=section))
1111
- shared.opts.add_option("controlnet_disable_openpose_edit", shared.OptionInfo(
1112
- False, "Disable openpose edit", gr.Checkbox, {"interactive": True}, section=section))
1113
- shared.opts.add_option("controlnet_ignore_noninpaint_mask", shared.OptionInfo(
1114
- False, "Ignore mask on ControlNet input image if control type is not inpaint",
1115
- gr.Checkbox, {"interactive": True}, section=section))
1116
-
1117
-
1118
- batch_hijack.instance.do_hijack()
1119
- script_callbacks.on_ui_settings(on_ui_settings)
1120
- script_callbacks.on_infotext_pasted(Infotext.on_infotext_pasted)
1121
- script_callbacks.on_after_component(ControlNetUiGroup.on_after_component)