Training complete
Browse files
README.md
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
---
|
|
|
2 |
license: apache-2.0
|
3 |
base_model: google-bert/bert-base-uncased
|
4 |
tags:
|
@@ -20,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Precision: 0.
|
25 |
-
- Recall: 0.
|
26 |
-
- F1: 0.
|
27 |
-
- Accuracy: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -43,12 +44,12 @@ More information needed
|
|
43 |
### Training hyperparameters
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
-
- learning_rate:
|
47 |
-
- train_batch_size:
|
48 |
-
- eval_batch_size:
|
49 |
- seed: 42
|
50 |
- gradient_accumulation_steps: 4
|
51 |
-
- total_train_batch_size:
|
52 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
- lr_scheduler_type: linear
|
54 |
- lr_scheduler_warmup_ratio: 0.05
|
@@ -59,16 +60,16 @@ The following hyperparameters were used during training:
|
|
59 |
|
60 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
61 |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
62 |
-
| No log | 0.
|
63 |
-
| No log | 1.
|
64 |
-
| No log | 2.
|
65 |
-
| No log | 4.0 |
|
66 |
-
| No log | 4.
|
67 |
|
68 |
|
69 |
### Framework versions
|
70 |
|
71 |
-
- Transformers 4.44.
|
72 |
- Pytorch 2.4.0+cu121
|
73 |
- Datasets 2.21.0
|
74 |
- Tokenizers 0.19.1
|
|
|
1 |
---
|
2 |
+
library_name: transformers
|
3 |
license: apache-2.0
|
4 |
base_model: google-bert/bert-base-uncased
|
5 |
tags:
|
|
|
21 |
|
22 |
This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.1008
|
25 |
+
- Precision: 0.7986
|
26 |
+
- Recall: 0.7968
|
27 |
+
- F1: 0.7977
|
28 |
+
- Accuracy: 0.9750
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
44 |
### Training hyperparameters
|
45 |
|
46 |
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 2e-05
|
48 |
+
- train_batch_size: 512
|
49 |
+
- eval_batch_size: 512
|
50 |
- seed: 42
|
51 |
- gradient_accumulation_steps: 4
|
52 |
+
- total_train_batch_size: 2048
|
53 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
- lr_scheduler_type: linear
|
55 |
- lr_scheduler_warmup_ratio: 0.05
|
|
|
60 |
|
61 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
62 |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
63 |
+
| No log | 0.8696 | 5 | 0.0968 | 0.8048 | 0.7943 | 0.7995 | 0.9757 |
|
64 |
+
| No log | 1.9130 | 11 | 0.0984 | 0.8030 | 0.7966 | 0.7998 | 0.9754 |
|
65 |
+
| No log | 2.9565 | 17 | 0.1003 | 0.8008 | 0.7965 | 0.7987 | 0.9751 |
|
66 |
+
| No log | 4.0 | 23 | 0.1008 | 0.7986 | 0.7968 | 0.7977 | 0.9750 |
|
67 |
+
| No log | 4.3478 | 25 | 0.1008 | 0.7986 | 0.7968 | 0.7977 | 0.9750 |
|
68 |
|
69 |
|
70 |
### Framework versions
|
71 |
|
72 |
+
- Transformers 4.44.1
|
73 |
- Pytorch 2.4.0+cu121
|
74 |
- Datasets 2.21.0
|
75 |
- Tokenizers 0.19.1
|
runs/Aug21_15-05-05_e0ea3028ecfc/events.out.tfevents.1724252709.e0ea3028ecfc.330.4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b613601997497602c2ef657f69d63c1d5dc12058bc1f10d7fcf90dd5b1784666
|
3 |
+
size 8448
|