onuralp commited on
Commit
f6b0963
·
1 Parent(s): 2ba0911

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: meta-llama/Llama-2-7b-hf
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: qlora-out
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
14
+ # qlora-out
15
+
16
+ This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.5703
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0004
38
+ - train_batch_size: 1
39
+ - eval_batch_size: 1
40
+ - seed: 42
41
+ - gradient_accumulation_steps: 16
42
+ - total_train_batch_size: 16
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: cosine
45
+ - lr_scheduler_warmup_steps: 100
46
+ - num_epochs: 2
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss |
51
+ |:-------------:|:-----:|:----:|:---------------:|
52
+ | 0.8756 | 0.06 | 20 | 0.7111 |
53
+ | 0.9058 | 0.11 | 40 | 0.6764 |
54
+ | 0.7526 | 0.17 | 60 | 0.6669 |
55
+ | 0.6926 | 0.23 | 80 | 0.6363 |
56
+ | 0.6731 | 0.28 | 100 | 0.6187 |
57
+ | 0.647 | 0.34 | 120 | 0.6162 |
58
+ | 0.6219 | 0.4 | 140 | 0.6041 |
59
+ | 0.5781 | 0.45 | 160 | 0.5937 |
60
+ | 0.6346 | 0.51 | 180 | 0.6006 |
61
+ | 0.7663 | 0.57 | 200 | 0.5926 |
62
+ | 0.5864 | 0.62 | 220 | 0.5866 |
63
+ | 0.5943 | 0.68 | 240 | 0.5756 |
64
+ | 0.5029 | 0.74 | 260 | 0.5733 |
65
+ | 0.5482 | 0.79 | 280 | 0.5712 |
66
+ | 0.5413 | 0.85 | 300 | 0.5820 |
67
+ | 0.657 | 0.91 | 320 | 0.5696 |
68
+ | 0.506 | 0.96 | 340 | 0.5839 |
69
+ | 0.4804 | 1.02 | 360 | 0.5803 |
70
+ | 0.5095 | 1.08 | 380 | 0.5974 |
71
+ | 0.4404 | 1.13 | 400 | 0.5746 |
72
+ | 0.3869 | 1.19 | 420 | 0.5740 |
73
+ | 0.4129 | 1.25 | 440 | 0.5777 |
74
+ | 0.4209 | 1.3 | 460 | 0.5825 |
75
+ | 0.4014 | 1.36 | 480 | 0.5742 |
76
+ | 0.3333 | 1.42 | 500 | 0.5851 |
77
+ | 0.5041 | 1.47 | 520 | 0.5798 |
78
+ | 0.5528 | 1.53 | 540 | 0.5631 |
79
+ | 0.4372 | 1.59 | 560 | 0.5747 |
80
+ | 0.3901 | 1.64 | 580 | 0.5625 |
81
+ | 0.5271 | 1.7 | 600 | 0.5746 |
82
+ | 0.4283 | 1.76 | 620 | 0.5662 |
83
+ | 0.4336 | 1.81 | 640 | 0.5652 |
84
+ | 0.3534 | 1.87 | 660 | 0.5697 |
85
+ | 0.4728 | 1.93 | 680 | 0.5713 |
86
+ | 0.5159 | 1.98 | 700 | 0.5703 |
87
+
88
+
89
+ ### Framework versions
90
+
91
+ - Transformers 4.34.1
92
+ - Pytorch 2.0.1+cu118
93
+ - Datasets 2.14.6
94
+ - Tokenizers 0.14.1
adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "meta-llama/Llama-2-7b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 16,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "gate_proj",
20
+ "up_proj",
21
+ "q_proj",
22
+ "k_proj",
23
+ "down_proj",
24
+ "v_proj",
25
+ "o_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20c54b4128d3990ad30d82d6e66838a8bd6bc36e4432c3f624f2c7aa1421f118
3
+ size 160069389
checkpoint-353/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: meta-llama/Llama-2-7b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.0.dev0
checkpoint-353/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "meta-llama/Llama-2-7b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 16,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "gate_proj",
20
+ "up_proj",
21
+ "q_proj",
22
+ "k_proj",
23
+ "down_proj",
24
+ "v_proj",
25
+ "o_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-353/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30d229b772492f04317dc1ee247837801c7d10438db8bd57b5ad7857d60c429a
3
+ size 160069389
checkpoint-353/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:641724849660ac23ff00668bd48b2c1e0973e6869fafbd2d8ec8c904af23f26a
3
+ size 320084485
checkpoint-353/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f93f102eaaaf175492fdb02a3c11f5b20ccd2940751ff92eb1e904824636842
3
+ size 14575
checkpoint-353/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:107742fc191734e42517b7ae0045017bb6bbac30ff33e6000caec822697c5c96
3
+ size 627
checkpoint-353/trainer_state.json ADDED
@@ -0,0 +1,2273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9994691205096443,
5
+ "eval_steps": 20,
6
+ "global_step": 353,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 4.000000000000001e-06,
14
+ "loss": 3.9795,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 8.000000000000001e-06,
20
+ "loss": 3.2944,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 1.2e-05,
26
+ "loss": 4.0746,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 1.6000000000000003e-05,
32
+ "loss": 4.1905,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 2e-05,
38
+ "loss": 4.4667,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.02,
43
+ "learning_rate": 2.4e-05,
44
+ "loss": 4.8488,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 2.8000000000000003e-05,
50
+ "loss": 4.1473,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 3.2000000000000005e-05,
56
+ "loss": 3.7834,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.03,
61
+ "learning_rate": 3.6e-05,
62
+ "loss": 3.2778,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.03,
67
+ "learning_rate": 4e-05,
68
+ "loss": 3.1975,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.03,
73
+ "learning_rate": 4.4000000000000006e-05,
74
+ "loss": 2.7504,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.03,
79
+ "learning_rate": 4.8e-05,
80
+ "loss": 2.5047,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.04,
85
+ "learning_rate": 5.2000000000000004e-05,
86
+ "loss": 2.3366,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.04,
91
+ "learning_rate": 5.6000000000000006e-05,
92
+ "loss": 2.1348,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.04,
97
+ "learning_rate": 6e-05,
98
+ "loss": 1.6171,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.05,
103
+ "learning_rate": 6.400000000000001e-05,
104
+ "loss": 1.2901,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.05,
109
+ "learning_rate": 6.800000000000001e-05,
110
+ "loss": 1.1358,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.05,
115
+ "learning_rate": 7.2e-05,
116
+ "loss": 0.9456,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.05,
121
+ "learning_rate": 7.6e-05,
122
+ "loss": 0.8864,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.06,
127
+ "learning_rate": 8e-05,
128
+ "loss": 0.8756,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.06,
133
+ "eval_loss": 0.7110548615455627,
134
+ "eval_runtime": 29.5129,
135
+ "eval_samples_per_second": 55.196,
136
+ "eval_steps_per_second": 55.196,
137
+ "step": 20
138
+ },
139
+ {
140
+ "epoch": 0.06,
141
+ "learning_rate": 8.4e-05,
142
+ "loss": 0.8825,
143
+ "step": 21
144
+ },
145
+ {
146
+ "epoch": 0.06,
147
+ "learning_rate": 8.800000000000001e-05,
148
+ "loss": 0.822,
149
+ "step": 22
150
+ },
151
+ {
152
+ "epoch": 0.07,
153
+ "learning_rate": 9.200000000000001e-05,
154
+ "loss": 0.8001,
155
+ "step": 23
156
+ },
157
+ {
158
+ "epoch": 0.07,
159
+ "learning_rate": 9.6e-05,
160
+ "loss": 0.8978,
161
+ "step": 24
162
+ },
163
+ {
164
+ "epoch": 0.07,
165
+ "learning_rate": 0.0001,
166
+ "loss": 0.8214,
167
+ "step": 25
168
+ },
169
+ {
170
+ "epoch": 0.07,
171
+ "learning_rate": 0.00010400000000000001,
172
+ "loss": 0.8012,
173
+ "step": 26
174
+ },
175
+ {
176
+ "epoch": 0.08,
177
+ "learning_rate": 0.00010800000000000001,
178
+ "loss": 0.9169,
179
+ "step": 27
180
+ },
181
+ {
182
+ "epoch": 0.08,
183
+ "learning_rate": 0.00011200000000000001,
184
+ "loss": 0.8436,
185
+ "step": 28
186
+ },
187
+ {
188
+ "epoch": 0.08,
189
+ "learning_rate": 0.000116,
190
+ "loss": 0.738,
191
+ "step": 29
192
+ },
193
+ {
194
+ "epoch": 0.08,
195
+ "learning_rate": 0.00012,
196
+ "loss": 0.8238,
197
+ "step": 30
198
+ },
199
+ {
200
+ "epoch": 0.09,
201
+ "learning_rate": 0.000124,
202
+ "loss": 0.85,
203
+ "step": 31
204
+ },
205
+ {
206
+ "epoch": 0.09,
207
+ "learning_rate": 0.00012800000000000002,
208
+ "loss": 0.8292,
209
+ "step": 32
210
+ },
211
+ {
212
+ "epoch": 0.09,
213
+ "learning_rate": 0.000132,
214
+ "loss": 0.8739,
215
+ "step": 33
216
+ },
217
+ {
218
+ "epoch": 0.1,
219
+ "learning_rate": 0.00013600000000000003,
220
+ "loss": 0.8456,
221
+ "step": 34
222
+ },
223
+ {
224
+ "epoch": 0.1,
225
+ "learning_rate": 0.00014,
226
+ "loss": 0.7558,
227
+ "step": 35
228
+ },
229
+ {
230
+ "epoch": 0.1,
231
+ "learning_rate": 0.000144,
232
+ "loss": 0.6982,
233
+ "step": 36
234
+ },
235
+ {
236
+ "epoch": 0.1,
237
+ "learning_rate": 0.000148,
238
+ "loss": 0.7985,
239
+ "step": 37
240
+ },
241
+ {
242
+ "epoch": 0.11,
243
+ "learning_rate": 0.000152,
244
+ "loss": 0.7995,
245
+ "step": 38
246
+ },
247
+ {
248
+ "epoch": 0.11,
249
+ "learning_rate": 0.00015600000000000002,
250
+ "loss": 0.5988,
251
+ "step": 39
252
+ },
253
+ {
254
+ "epoch": 0.11,
255
+ "learning_rate": 0.00016,
256
+ "loss": 0.9058,
257
+ "step": 40
258
+ },
259
+ {
260
+ "epoch": 0.11,
261
+ "eval_loss": 0.6764179468154907,
262
+ "eval_runtime": 29.6679,
263
+ "eval_samples_per_second": 54.908,
264
+ "eval_steps_per_second": 54.908,
265
+ "step": 40
266
+ },
267
+ {
268
+ "epoch": 0.12,
269
+ "learning_rate": 0.000164,
270
+ "loss": 0.8351,
271
+ "step": 41
272
+ },
273
+ {
274
+ "epoch": 0.12,
275
+ "learning_rate": 0.000168,
276
+ "loss": 0.8182,
277
+ "step": 42
278
+ },
279
+ {
280
+ "epoch": 0.12,
281
+ "learning_rate": 0.000172,
282
+ "loss": 0.8694,
283
+ "step": 43
284
+ },
285
+ {
286
+ "epoch": 0.12,
287
+ "learning_rate": 0.00017600000000000002,
288
+ "loss": 0.7743,
289
+ "step": 44
290
+ },
291
+ {
292
+ "epoch": 0.13,
293
+ "learning_rate": 0.00018,
294
+ "loss": 0.7448,
295
+ "step": 45
296
+ },
297
+ {
298
+ "epoch": 0.13,
299
+ "learning_rate": 0.00018400000000000003,
300
+ "loss": 0.8416,
301
+ "step": 46
302
+ },
303
+ {
304
+ "epoch": 0.13,
305
+ "learning_rate": 0.000188,
306
+ "loss": 0.7496,
307
+ "step": 47
308
+ },
309
+ {
310
+ "epoch": 0.14,
311
+ "learning_rate": 0.000192,
312
+ "loss": 0.7353,
313
+ "step": 48
314
+ },
315
+ {
316
+ "epoch": 0.14,
317
+ "learning_rate": 0.000196,
318
+ "loss": 0.9026,
319
+ "step": 49
320
+ },
321
+ {
322
+ "epoch": 0.14,
323
+ "learning_rate": 0.0002,
324
+ "loss": 0.8415,
325
+ "step": 50
326
+ },
327
+ {
328
+ "epoch": 0.14,
329
+ "learning_rate": 0.00020400000000000003,
330
+ "loss": 0.7606,
331
+ "step": 51
332
+ },
333
+ {
334
+ "epoch": 0.15,
335
+ "learning_rate": 0.00020800000000000001,
336
+ "loss": 0.743,
337
+ "step": 52
338
+ },
339
+ {
340
+ "epoch": 0.15,
341
+ "learning_rate": 0.00021200000000000003,
342
+ "loss": 0.7478,
343
+ "step": 53
344
+ },
345
+ {
346
+ "epoch": 0.15,
347
+ "learning_rate": 0.00021600000000000002,
348
+ "loss": 0.6924,
349
+ "step": 54
350
+ },
351
+ {
352
+ "epoch": 0.16,
353
+ "learning_rate": 0.00022000000000000003,
354
+ "loss": 0.9163,
355
+ "step": 55
356
+ },
357
+ {
358
+ "epoch": 0.16,
359
+ "learning_rate": 0.00022400000000000002,
360
+ "loss": 0.7332,
361
+ "step": 56
362
+ },
363
+ {
364
+ "epoch": 0.16,
365
+ "learning_rate": 0.00022799999999999999,
366
+ "loss": 0.7678,
367
+ "step": 57
368
+ },
369
+ {
370
+ "epoch": 0.16,
371
+ "learning_rate": 0.000232,
372
+ "loss": 0.7561,
373
+ "step": 58
374
+ },
375
+ {
376
+ "epoch": 0.17,
377
+ "learning_rate": 0.000236,
378
+ "loss": 0.8494,
379
+ "step": 59
380
+ },
381
+ {
382
+ "epoch": 0.17,
383
+ "learning_rate": 0.00024,
384
+ "loss": 0.7526,
385
+ "step": 60
386
+ },
387
+ {
388
+ "epoch": 0.17,
389
+ "eval_loss": 0.6668684482574463,
390
+ "eval_runtime": 29.5308,
391
+ "eval_samples_per_second": 55.163,
392
+ "eval_steps_per_second": 55.163,
393
+ "step": 60
394
+ },
395
+ {
396
+ "epoch": 0.17,
397
+ "learning_rate": 0.000244,
398
+ "loss": 0.7944,
399
+ "step": 61
400
+ },
401
+ {
402
+ "epoch": 0.18,
403
+ "learning_rate": 0.000248,
404
+ "loss": 0.7107,
405
+ "step": 62
406
+ },
407
+ {
408
+ "epoch": 0.18,
409
+ "learning_rate": 0.000252,
410
+ "loss": 0.7443,
411
+ "step": 63
412
+ },
413
+ {
414
+ "epoch": 0.18,
415
+ "learning_rate": 0.00025600000000000004,
416
+ "loss": 0.7802,
417
+ "step": 64
418
+ },
419
+ {
420
+ "epoch": 0.18,
421
+ "learning_rate": 0.00026000000000000003,
422
+ "loss": 0.6785,
423
+ "step": 65
424
+ },
425
+ {
426
+ "epoch": 0.19,
427
+ "learning_rate": 0.000264,
428
+ "loss": 0.7853,
429
+ "step": 66
430
+ },
431
+ {
432
+ "epoch": 0.19,
433
+ "learning_rate": 0.000268,
434
+ "loss": 0.8059,
435
+ "step": 67
436
+ },
437
+ {
438
+ "epoch": 0.19,
439
+ "learning_rate": 0.00027200000000000005,
440
+ "loss": 0.6702,
441
+ "step": 68
442
+ },
443
+ {
444
+ "epoch": 0.2,
445
+ "learning_rate": 0.000276,
446
+ "loss": 0.7784,
447
+ "step": 69
448
+ },
449
+ {
450
+ "epoch": 0.2,
451
+ "learning_rate": 0.00028,
452
+ "loss": 0.7447,
453
+ "step": 70
454
+ },
455
+ {
456
+ "epoch": 0.2,
457
+ "learning_rate": 0.000284,
458
+ "loss": 0.6466,
459
+ "step": 71
460
+ },
461
+ {
462
+ "epoch": 0.2,
463
+ "learning_rate": 0.000288,
464
+ "loss": 0.6549,
465
+ "step": 72
466
+ },
467
+ {
468
+ "epoch": 0.21,
469
+ "learning_rate": 0.000292,
470
+ "loss": 0.6841,
471
+ "step": 73
472
+ },
473
+ {
474
+ "epoch": 0.21,
475
+ "learning_rate": 0.000296,
476
+ "loss": 0.6441,
477
+ "step": 74
478
+ },
479
+ {
480
+ "epoch": 0.21,
481
+ "learning_rate": 0.00030000000000000003,
482
+ "loss": 0.6777,
483
+ "step": 75
484
+ },
485
+ {
486
+ "epoch": 0.22,
487
+ "learning_rate": 0.000304,
488
+ "loss": 0.7301,
489
+ "step": 76
490
+ },
491
+ {
492
+ "epoch": 0.22,
493
+ "learning_rate": 0.000308,
494
+ "loss": 0.692,
495
+ "step": 77
496
+ },
497
+ {
498
+ "epoch": 0.22,
499
+ "learning_rate": 0.00031200000000000005,
500
+ "loss": 0.7697,
501
+ "step": 78
502
+ },
503
+ {
504
+ "epoch": 0.22,
505
+ "learning_rate": 0.00031600000000000004,
506
+ "loss": 0.6374,
507
+ "step": 79
508
+ },
509
+ {
510
+ "epoch": 0.23,
511
+ "learning_rate": 0.00032,
512
+ "loss": 0.6926,
513
+ "step": 80
514
+ },
515
+ {
516
+ "epoch": 0.23,
517
+ "eval_loss": 0.6363404989242554,
518
+ "eval_runtime": 29.5123,
519
+ "eval_samples_per_second": 55.197,
520
+ "eval_steps_per_second": 55.197,
521
+ "step": 80
522
+ },
523
+ {
524
+ "epoch": 0.23,
525
+ "learning_rate": 0.000324,
526
+ "loss": 0.7258,
527
+ "step": 81
528
+ },
529
+ {
530
+ "epoch": 0.23,
531
+ "learning_rate": 0.000328,
532
+ "loss": 0.6556,
533
+ "step": 82
534
+ },
535
+ {
536
+ "epoch": 0.24,
537
+ "learning_rate": 0.000332,
538
+ "loss": 0.6122,
539
+ "step": 83
540
+ },
541
+ {
542
+ "epoch": 0.24,
543
+ "learning_rate": 0.000336,
544
+ "loss": 0.6915,
545
+ "step": 84
546
+ },
547
+ {
548
+ "epoch": 0.24,
549
+ "learning_rate": 0.00034,
550
+ "loss": 0.7711,
551
+ "step": 85
552
+ },
553
+ {
554
+ "epoch": 0.24,
555
+ "learning_rate": 0.000344,
556
+ "loss": 0.6637,
557
+ "step": 86
558
+ },
559
+ {
560
+ "epoch": 0.25,
561
+ "learning_rate": 0.000348,
562
+ "loss": 0.635,
563
+ "step": 87
564
+ },
565
+ {
566
+ "epoch": 0.25,
567
+ "learning_rate": 0.00035200000000000005,
568
+ "loss": 0.648,
569
+ "step": 88
570
+ },
571
+ {
572
+ "epoch": 0.25,
573
+ "learning_rate": 0.00035600000000000003,
574
+ "loss": 0.6904,
575
+ "step": 89
576
+ },
577
+ {
578
+ "epoch": 0.25,
579
+ "learning_rate": 0.00036,
580
+ "loss": 0.7026,
581
+ "step": 90
582
+ },
583
+ {
584
+ "epoch": 0.26,
585
+ "learning_rate": 0.000364,
586
+ "loss": 0.6285,
587
+ "step": 91
588
+ },
589
+ {
590
+ "epoch": 0.26,
591
+ "learning_rate": 0.00036800000000000005,
592
+ "loss": 0.6239,
593
+ "step": 92
594
+ },
595
+ {
596
+ "epoch": 0.26,
597
+ "learning_rate": 0.00037200000000000004,
598
+ "loss": 0.6897,
599
+ "step": 93
600
+ },
601
+ {
602
+ "epoch": 0.27,
603
+ "learning_rate": 0.000376,
604
+ "loss": 0.6162,
605
+ "step": 94
606
+ },
607
+ {
608
+ "epoch": 0.27,
609
+ "learning_rate": 0.00038,
610
+ "loss": 0.6414,
611
+ "step": 95
612
+ },
613
+ {
614
+ "epoch": 0.27,
615
+ "learning_rate": 0.000384,
616
+ "loss": 0.637,
617
+ "step": 96
618
+ },
619
+ {
620
+ "epoch": 0.27,
621
+ "learning_rate": 0.000388,
622
+ "loss": 0.7453,
623
+ "step": 97
624
+ },
625
+ {
626
+ "epoch": 0.28,
627
+ "learning_rate": 0.000392,
628
+ "loss": 0.6462,
629
+ "step": 98
630
+ },
631
+ {
632
+ "epoch": 0.28,
633
+ "learning_rate": 0.00039600000000000003,
634
+ "loss": 0.6717,
635
+ "step": 99
636
+ },
637
+ {
638
+ "epoch": 0.28,
639
+ "learning_rate": 0.0004,
640
+ "loss": 0.6731,
641
+ "step": 100
642
+ },
643
+ {
644
+ "epoch": 0.28,
645
+ "eval_loss": 0.6186901926994324,
646
+ "eval_runtime": 29.5468,
647
+ "eval_samples_per_second": 55.133,
648
+ "eval_steps_per_second": 55.133,
649
+ "step": 100
650
+ },
651
+ {
652
+ "epoch": 0.29,
653
+ "learning_rate": 0.00039999731246874025,
654
+ "loss": 0.6801,
655
+ "step": 101
656
+ },
657
+ {
658
+ "epoch": 0.29,
659
+ "learning_rate": 0.0003999892499471893,
660
+ "loss": 0.6285,
661
+ "step": 102
662
+ },
663
+ {
664
+ "epoch": 0.29,
665
+ "learning_rate": 0.00039997581265202993,
666
+ "loss": 0.6436,
667
+ "step": 103
668
+ },
669
+ {
670
+ "epoch": 0.29,
671
+ "learning_rate": 0.0003999570009443936,
672
+ "loss": 0.7124,
673
+ "step": 104
674
+ },
675
+ {
676
+ "epoch": 0.3,
677
+ "learning_rate": 0.00039993281532985087,
678
+ "loss": 0.6157,
679
+ "step": 105
680
+ },
681
+ {
682
+ "epoch": 0.3,
683
+ "learning_rate": 0.00039990325645839766,
684
+ "loss": 0.6532,
685
+ "step": 106
686
+ },
687
+ {
688
+ "epoch": 0.3,
689
+ "learning_rate": 0.0003998683251244379,
690
+ "loss": 0.6072,
691
+ "step": 107
692
+ },
693
+ {
694
+ "epoch": 0.31,
695
+ "learning_rate": 0.0003998280222667621,
696
+ "loss": 0.6871,
697
+ "step": 108
698
+ },
699
+ {
700
+ "epoch": 0.31,
701
+ "learning_rate": 0.00039978234896852216,
702
+ "loss": 0.6139,
703
+ "step": 109
704
+ },
705
+ {
706
+ "epoch": 0.31,
707
+ "learning_rate": 0.0003997313064572023,
708
+ "loss": 0.7056,
709
+ "step": 110
710
+ },
711
+ {
712
+ "epoch": 0.31,
713
+ "learning_rate": 0.0003996748961045859,
714
+ "loss": 0.5983,
715
+ "step": 111
716
+ },
717
+ {
718
+ "epoch": 0.32,
719
+ "learning_rate": 0.0003996131194267189,
720
+ "loss": 0.5374,
721
+ "step": 112
722
+ },
723
+ {
724
+ "epoch": 0.32,
725
+ "learning_rate": 0.00039954597808386874,
726
+ "loss": 0.6804,
727
+ "step": 113
728
+ },
729
+ {
730
+ "epoch": 0.32,
731
+ "learning_rate": 0.00039947347388048,
732
+ "loss": 0.6254,
733
+ "step": 114
734
+ },
735
+ {
736
+ "epoch": 0.33,
737
+ "learning_rate": 0.00039939560876512585,
738
+ "loss": 0.7221,
739
+ "step": 115
740
+ },
741
+ {
742
+ "epoch": 0.33,
743
+ "learning_rate": 0.0003993123848304556,
744
+ "loss": 0.6417,
745
+ "step": 116
746
+ },
747
+ {
748
+ "epoch": 0.33,
749
+ "learning_rate": 0.0003992238043131386,
750
+ "loss": 0.4836,
751
+ "step": 117
752
+ },
753
+ {
754
+ "epoch": 0.33,
755
+ "learning_rate": 0.0003991298695938038,
756
+ "loss": 0.6186,
757
+ "step": 118
758
+ },
759
+ {
760
+ "epoch": 0.34,
761
+ "learning_rate": 0.0003990305831969761,
762
+ "loss": 0.6362,
763
+ "step": 119
764
+ },
765
+ {
766
+ "epoch": 0.34,
767
+ "learning_rate": 0.00039892594779100866,
768
+ "loss": 0.647,
769
+ "step": 120
770
+ },
771
+ {
772
+ "epoch": 0.34,
773
+ "eval_loss": 0.6162068843841553,
774
+ "eval_runtime": 29.5244,
775
+ "eval_samples_per_second": 55.175,
776
+ "eval_steps_per_second": 55.175,
777
+ "step": 120
778
+ },
779
+ {
780
+ "epoch": 0.34,
781
+ "learning_rate": 0.0003988159661880105,
782
+ "loss": 0.5818,
783
+ "step": 121
784
+ },
785
+ {
786
+ "epoch": 0.35,
787
+ "learning_rate": 0.0003987006413437718,
788
+ "loss": 0.6267,
789
+ "step": 122
790
+ },
791
+ {
792
+ "epoch": 0.35,
793
+ "learning_rate": 0.00039857997635768365,
794
+ "loss": 0.5502,
795
+ "step": 123
796
+ },
797
+ {
798
+ "epoch": 0.35,
799
+ "learning_rate": 0.00039845397447265535,
800
+ "loss": 0.6438,
801
+ "step": 124
802
+ },
803
+ {
804
+ "epoch": 0.35,
805
+ "learning_rate": 0.00039832263907502684,
806
+ "loss": 0.6472,
807
+ "step": 125
808
+ },
809
+ {
810
+ "epoch": 0.36,
811
+ "learning_rate": 0.0003981859736944781,
812
+ "loss": 0.6834,
813
+ "step": 126
814
+ },
815
+ {
816
+ "epoch": 0.36,
817
+ "learning_rate": 0.00039804398200393395,
818
+ "loss": 0.6091,
819
+ "step": 127
820
+ },
821
+ {
822
+ "epoch": 0.36,
823
+ "learning_rate": 0.0003978966678194653,
824
+ "loss": 0.58,
825
+ "step": 128
826
+ },
827
+ {
828
+ "epoch": 0.37,
829
+ "learning_rate": 0.00039774403510018714,
830
+ "loss": 0.5988,
831
+ "step": 129
832
+ },
833
+ {
834
+ "epoch": 0.37,
835
+ "learning_rate": 0.0003975860879481514,
836
+ "loss": 0.6177,
837
+ "step": 130
838
+ },
839
+ {
840
+ "epoch": 0.37,
841
+ "learning_rate": 0.00039742283060823706,
842
+ "loss": 0.5535,
843
+ "step": 131
844
+ },
845
+ {
846
+ "epoch": 0.37,
847
+ "learning_rate": 0.0003972542674680364,
848
+ "loss": 0.7208,
849
+ "step": 132
850
+ },
851
+ {
852
+ "epoch": 0.38,
853
+ "learning_rate": 0.0003970804030577363,
854
+ "loss": 0.626,
855
+ "step": 133
856
+ },
857
+ {
858
+ "epoch": 0.38,
859
+ "learning_rate": 0.0003969012420499972,
860
+ "loss": 0.5747,
861
+ "step": 134
862
+ },
863
+ {
864
+ "epoch": 0.38,
865
+ "learning_rate": 0.00039671678925982723,
866
+ "loss": 0.5567,
867
+ "step": 135
868
+ },
869
+ {
870
+ "epoch": 0.39,
871
+ "learning_rate": 0.00039652704964445275,
872
+ "loss": 0.6814,
873
+ "step": 136
874
+ },
875
+ {
876
+ "epoch": 0.39,
877
+ "learning_rate": 0.00039633202830318526,
878
+ "loss": 0.5917,
879
+ "step": 137
880
+ },
881
+ {
882
+ "epoch": 0.39,
883
+ "learning_rate": 0.0003961317304772842,
884
+ "loss": 0.5793,
885
+ "step": 138
886
+ },
887
+ {
888
+ "epoch": 0.39,
889
+ "learning_rate": 0.00039592616154981633,
890
+ "loss": 0.6533,
891
+ "step": 139
892
+ },
893
+ {
894
+ "epoch": 0.4,
895
+ "learning_rate": 0.00039571532704551083,
896
+ "loss": 0.6219,
897
+ "step": 140
898
+ },
899
+ {
900
+ "epoch": 0.4,
901
+ "eval_loss": 0.6040534377098083,
902
+ "eval_runtime": 29.5629,
903
+ "eval_samples_per_second": 55.103,
904
+ "eval_steps_per_second": 55.103,
905
+ "step": 140
906
+ },
907
+ {
908
+ "epoch": 0.4,
909
+ "learning_rate": 0.0003954992326306109,
910
+ "loss": 0.5167,
911
+ "step": 141
912
+ },
913
+ {
914
+ "epoch": 0.4,
915
+ "learning_rate": 0.00039527788411272143,
916
+ "loss": 0.6516,
917
+ "step": 142
918
+ },
919
+ {
920
+ "epoch": 0.4,
921
+ "learning_rate": 0.00039505128744065314,
922
+ "loss": 0.607,
923
+ "step": 143
924
+ },
925
+ {
926
+ "epoch": 0.41,
927
+ "learning_rate": 0.0003948194487042623,
928
+ "loss": 0.6482,
929
+ "step": 144
930
+ },
931
+ {
932
+ "epoch": 0.41,
933
+ "learning_rate": 0.0003945823741342875,
934
+ "loss": 0.6133,
935
+ "step": 145
936
+ },
937
+ {
938
+ "epoch": 0.41,
939
+ "learning_rate": 0.0003943400701021819,
940
+ "loss": 0.5582,
941
+ "step": 146
942
+ },
943
+ {
944
+ "epoch": 0.42,
945
+ "learning_rate": 0.00039409254311994216,
946
+ "loss": 0.5985,
947
+ "step": 147
948
+ },
949
+ {
950
+ "epoch": 0.42,
951
+ "learning_rate": 0.00039383979983993327,
952
+ "loss": 0.5648,
953
+ "step": 148
954
+ },
955
+ {
956
+ "epoch": 0.42,
957
+ "learning_rate": 0.0003935818470547098,
958
+ "loss": 0.5884,
959
+ "step": 149
960
+ },
961
+ {
962
+ "epoch": 0.42,
963
+ "learning_rate": 0.00039331869169683363,
964
+ "loss": 0.5948,
965
+ "step": 150
966
+ },
967
+ {
968
+ "epoch": 0.43,
969
+ "learning_rate": 0.0003930503408386871,
970
+ "loss": 0.5532,
971
+ "step": 151
972
+ },
973
+ {
974
+ "epoch": 0.43,
975
+ "learning_rate": 0.00039277680169228364,
976
+ "loss": 0.6034,
977
+ "step": 152
978
+ },
979
+ {
980
+ "epoch": 0.43,
981
+ "learning_rate": 0.0003924980816090731,
982
+ "loss": 0.6522,
983
+ "step": 153
984
+ },
985
+ {
986
+ "epoch": 0.44,
987
+ "learning_rate": 0.0003922141880797449,
988
+ "loss": 0.6142,
989
+ "step": 154
990
+ },
991
+ {
992
+ "epoch": 0.44,
993
+ "learning_rate": 0.0003919251287340265,
994
+ "loss": 0.5816,
995
+ "step": 155
996
+ },
997
+ {
998
+ "epoch": 0.44,
999
+ "learning_rate": 0.000391630911340478,
1000
+ "loss": 0.5686,
1001
+ "step": 156
1002
+ },
1003
+ {
1004
+ "epoch": 0.44,
1005
+ "learning_rate": 0.00039133154380628394,
1006
+ "loss": 0.6053,
1007
+ "step": 157
1008
+ },
1009
+ {
1010
+ "epoch": 0.45,
1011
+ "learning_rate": 0.0003910270341770404,
1012
+ "loss": 0.7025,
1013
+ "step": 158
1014
+ },
1015
+ {
1016
+ "epoch": 0.45,
1017
+ "learning_rate": 0.00039071739063653875,
1018
+ "loss": 0.5625,
1019
+ "step": 159
1020
+ },
1021
+ {
1022
+ "epoch": 0.45,
1023
+ "learning_rate": 0.00039040262150654597,
1024
+ "loss": 0.5781,
1025
+ "step": 160
1026
+ },
1027
+ {
1028
+ "epoch": 0.45,
1029
+ "eval_loss": 0.593679666519165,
1030
+ "eval_runtime": 29.5229,
1031
+ "eval_samples_per_second": 55.178,
1032
+ "eval_steps_per_second": 55.178,
1033
+ "step": 160
1034
+ },
1035
+ {
1036
+ "epoch": 0.46,
1037
+ "learning_rate": 0.00039008273524658094,
1038
+ "loss": 0.603,
1039
+ "step": 161
1040
+ },
1041
+ {
1042
+ "epoch": 0.46,
1043
+ "learning_rate": 0.0003897577404536867,
1044
+ "loss": 0.5789,
1045
+ "step": 162
1046
+ },
1047
+ {
1048
+ "epoch": 0.46,
1049
+ "learning_rate": 0.00038942764586220006,
1050
+ "loss": 0.6881,
1051
+ "step": 163
1052
+ },
1053
+ {
1054
+ "epoch": 0.46,
1055
+ "learning_rate": 0.00038909246034351624,
1056
+ "loss": 0.6034,
1057
+ "step": 164
1058
+ },
1059
+ {
1060
+ "epoch": 0.47,
1061
+ "learning_rate": 0.00038875219290585093,
1062
+ "loss": 0.5881,
1063
+ "step": 165
1064
+ },
1065
+ {
1066
+ "epoch": 0.47,
1067
+ "learning_rate": 0.0003884068526939978,
1068
+ "loss": 0.6318,
1069
+ "step": 166
1070
+ },
1071
+ {
1072
+ "epoch": 0.47,
1073
+ "learning_rate": 0.00038805644898908307,
1074
+ "loss": 0.5383,
1075
+ "step": 167
1076
+ },
1077
+ {
1078
+ "epoch": 0.48,
1079
+ "learning_rate": 0.0003877009912083159,
1080
+ "loss": 0.5284,
1081
+ "step": 168
1082
+ },
1083
+ {
1084
+ "epoch": 0.48,
1085
+ "learning_rate": 0.00038734048890473507,
1086
+ "loss": 0.5723,
1087
+ "step": 169
1088
+ },
1089
+ {
1090
+ "epoch": 0.48,
1091
+ "learning_rate": 0.00038697495176695274,
1092
+ "loss": 0.6311,
1093
+ "step": 170
1094
+ },
1095
+ {
1096
+ "epoch": 0.48,
1097
+ "learning_rate": 0.00038660438961889387,
1098
+ "loss": 0.6043,
1099
+ "step": 171
1100
+ },
1101
+ {
1102
+ "epoch": 0.49,
1103
+ "learning_rate": 0.00038622881241953195,
1104
+ "loss": 0.5023,
1105
+ "step": 172
1106
+ },
1107
+ {
1108
+ "epoch": 0.49,
1109
+ "learning_rate": 0.0003858482302626216,
1110
+ "loss": 0.566,
1111
+ "step": 173
1112
+ },
1113
+ {
1114
+ "epoch": 0.49,
1115
+ "learning_rate": 0.0003854626533764273,
1116
+ "loss": 0.5677,
1117
+ "step": 174
1118
+ },
1119
+ {
1120
+ "epoch": 0.5,
1121
+ "learning_rate": 0.00038507209212344833,
1122
+ "loss": 0.6342,
1123
+ "step": 175
1124
+ },
1125
+ {
1126
+ "epoch": 0.5,
1127
+ "learning_rate": 0.00038467655700014054,
1128
+ "loss": 0.6095,
1129
+ "step": 176
1130
+ },
1131
+ {
1132
+ "epoch": 0.5,
1133
+ "learning_rate": 0.0003842760586366339,
1134
+ "loss": 0.6715,
1135
+ "step": 177
1136
+ },
1137
+ {
1138
+ "epoch": 0.5,
1139
+ "learning_rate": 0.00038387060779644725,
1140
+ "loss": 0.5173,
1141
+ "step": 178
1142
+ },
1143
+ {
1144
+ "epoch": 0.51,
1145
+ "learning_rate": 0.00038346021537619866,
1146
+ "loss": 0.6155,
1147
+ "step": 179
1148
+ },
1149
+ {
1150
+ "epoch": 0.51,
1151
+ "learning_rate": 0.0003830448924053126,
1152
+ "loss": 0.6346,
1153
+ "step": 180
1154
+ },
1155
+ {
1156
+ "epoch": 0.51,
1157
+ "eval_loss": 0.6006138324737549,
1158
+ "eval_runtime": 29.5105,
1159
+ "eval_samples_per_second": 55.201,
1160
+ "eval_steps_per_second": 55.201,
1161
+ "step": 180
1162
+ },
1163
+ {
1164
+ "epoch": 0.51,
1165
+ "learning_rate": 0.00038262465004572377,
1166
+ "loss": 0.7549,
1167
+ "step": 181
1168
+ },
1169
+ {
1170
+ "epoch": 0.52,
1171
+ "learning_rate": 0.000382199499591577,
1172
+ "loss": 0.5214,
1173
+ "step": 182
1174
+ },
1175
+ {
1176
+ "epoch": 0.52,
1177
+ "learning_rate": 0.00038176945246892367,
1178
+ "loss": 0.5625,
1179
+ "step": 183
1180
+ },
1181
+ {
1182
+ "epoch": 0.52,
1183
+ "learning_rate": 0.0003813345202354145,
1184
+ "loss": 0.5267,
1185
+ "step": 184
1186
+ },
1187
+ {
1188
+ "epoch": 0.52,
1189
+ "learning_rate": 0.0003808947145799894,
1190
+ "loss": 0.6413,
1191
+ "step": 185
1192
+ },
1193
+ {
1194
+ "epoch": 0.53,
1195
+ "learning_rate": 0.0003804500473225627,
1196
+ "loss": 0.4987,
1197
+ "step": 186
1198
+ },
1199
+ {
1200
+ "epoch": 0.53,
1201
+ "learning_rate": 0.00038000053041370603,
1202
+ "loss": 0.6235,
1203
+ "step": 187
1204
+ },
1205
+ {
1206
+ "epoch": 0.53,
1207
+ "learning_rate": 0.0003795461759343268,
1208
+ "loss": 0.5331,
1209
+ "step": 188
1210
+ },
1211
+ {
1212
+ "epoch": 0.54,
1213
+ "learning_rate": 0.0003790869960953437,
1214
+ "loss": 0.6096,
1215
+ "step": 189
1216
+ },
1217
+ {
1218
+ "epoch": 0.54,
1219
+ "learning_rate": 0.0003786230032373583,
1220
+ "loss": 0.5872,
1221
+ "step": 190
1222
+ },
1223
+ {
1224
+ "epoch": 0.54,
1225
+ "learning_rate": 0.00037815420983032397,
1226
+ "loss": 0.6665,
1227
+ "step": 191
1228
+ },
1229
+ {
1230
+ "epoch": 0.54,
1231
+ "learning_rate": 0.0003776806284732098,
1232
+ "loss": 0.7373,
1233
+ "step": 192
1234
+ },
1235
+ {
1236
+ "epoch": 0.55,
1237
+ "learning_rate": 0.00037720227189366295,
1238
+ "loss": 0.5193,
1239
+ "step": 193
1240
+ },
1241
+ {
1242
+ "epoch": 0.55,
1243
+ "learning_rate": 0.00037671915294766606,
1244
+ "loss": 0.5335,
1245
+ "step": 194
1246
+ },
1247
+ {
1248
+ "epoch": 0.55,
1249
+ "learning_rate": 0.00037623128461919175,
1250
+ "loss": 0.5148,
1251
+ "step": 195
1252
+ },
1253
+ {
1254
+ "epoch": 0.55,
1255
+ "learning_rate": 0.00037573868001985377,
1256
+ "loss": 0.5961,
1257
+ "step": 196
1258
+ },
1259
+ {
1260
+ "epoch": 0.56,
1261
+ "learning_rate": 0.0003752413523885549,
1262
+ "loss": 0.5421,
1263
+ "step": 197
1264
+ },
1265
+ {
1266
+ "epoch": 0.56,
1267
+ "learning_rate": 0.00037473931509113056,
1268
+ "loss": 0.6177,
1269
+ "step": 198
1270
+ },
1271
+ {
1272
+ "epoch": 0.56,
1273
+ "learning_rate": 0.0003742325816199901,
1274
+ "loss": 0.6656,
1275
+ "step": 199
1276
+ },
1277
+ {
1278
+ "epoch": 0.57,
1279
+ "learning_rate": 0.00037372116559375397,
1280
+ "loss": 0.7663,
1281
+ "step": 200
1282
+ },
1283
+ {
1284
+ "epoch": 0.57,
1285
+ "eval_loss": 0.5926464200019836,
1286
+ "eval_runtime": 29.5066,
1287
+ "eval_samples_per_second": 55.208,
1288
+ "eval_steps_per_second": 55.208,
1289
+ "step": 200
1290
+ },
1291
+ {
1292
+ "epoch": 0.57,
1293
+ "learning_rate": 0.00037320508075688776,
1294
+ "loss": 0.6667,
1295
+ "step": 201
1296
+ },
1297
+ {
1298
+ "epoch": 0.57,
1299
+ "learning_rate": 0.00037268434097933274,
1300
+ "loss": 0.587,
1301
+ "step": 202
1302
+ },
1303
+ {
1304
+ "epoch": 0.57,
1305
+ "learning_rate": 0.0003721589602561332,
1306
+ "loss": 0.5747,
1307
+ "step": 203
1308
+ },
1309
+ {
1310
+ "epoch": 0.58,
1311
+ "learning_rate": 0.0003716289527070604,
1312
+ "loss": 0.557,
1313
+ "step": 204
1314
+ },
1315
+ {
1316
+ "epoch": 0.58,
1317
+ "learning_rate": 0.0003710943325762328,
1318
+ "loss": 0.5724,
1319
+ "step": 205
1320
+ },
1321
+ {
1322
+ "epoch": 0.58,
1323
+ "learning_rate": 0.00037055511423173356,
1324
+ "loss": 0.6036,
1325
+ "step": 206
1326
+ },
1327
+ {
1328
+ "epoch": 0.59,
1329
+ "learning_rate": 0.0003700113121652243,
1330
+ "loss": 0.6007,
1331
+ "step": 207
1332
+ },
1333
+ {
1334
+ "epoch": 0.59,
1335
+ "learning_rate": 0.0003694629409915555,
1336
+ "loss": 0.6895,
1337
+ "step": 208
1338
+ },
1339
+ {
1340
+ "epoch": 0.59,
1341
+ "learning_rate": 0.00036891001544837393,
1342
+ "loss": 0.6642,
1343
+ "step": 209
1344
+ },
1345
+ {
1346
+ "epoch": 0.59,
1347
+ "learning_rate": 0.0003683525503957263,
1348
+ "loss": 0.7124,
1349
+ "step": 210
1350
+ },
1351
+ {
1352
+ "epoch": 0.6,
1353
+ "learning_rate": 0.00036779056081566024,
1354
+ "loss": 0.52,
1355
+ "step": 211
1356
+ },
1357
+ {
1358
+ "epoch": 0.6,
1359
+ "learning_rate": 0.00036722406181182143,
1360
+ "loss": 0.6133,
1361
+ "step": 212
1362
+ },
1363
+ {
1364
+ "epoch": 0.6,
1365
+ "learning_rate": 0.0003666530686090475,
1366
+ "loss": 0.5487,
1367
+ "step": 213
1368
+ },
1369
+ {
1370
+ "epoch": 0.61,
1371
+ "learning_rate": 0.0003660775965529595,
1372
+ "loss": 0.5686,
1373
+ "step": 214
1374
+ },
1375
+ {
1376
+ "epoch": 0.61,
1377
+ "learning_rate": 0.0003654976611095487,
1378
+ "loss": 0.4951,
1379
+ "step": 215
1380
+ },
1381
+ {
1382
+ "epoch": 0.61,
1383
+ "learning_rate": 0.0003649132778647615,
1384
+ "loss": 0.5794,
1385
+ "step": 216
1386
+ },
1387
+ {
1388
+ "epoch": 0.61,
1389
+ "learning_rate": 0.00036432446252408014,
1390
+ "loss": 0.4965,
1391
+ "step": 217
1392
+ },
1393
+ {
1394
+ "epoch": 0.62,
1395
+ "learning_rate": 0.0003637312309121011,
1396
+ "loss": 0.6146,
1397
+ "step": 218
1398
+ },
1399
+ {
1400
+ "epoch": 0.62,
1401
+ "learning_rate": 0.00036313359897210935,
1402
+ "loss": 0.5697,
1403
+ "step": 219
1404
+ },
1405
+ {
1406
+ "epoch": 0.62,
1407
+ "learning_rate": 0.00036253158276565006,
1408
+ "loss": 0.5864,
1409
+ "step": 220
1410
+ },
1411
+ {
1412
+ "epoch": 0.62,
1413
+ "eval_loss": 0.5865967273712158,
1414
+ "eval_runtime": 29.5042,
1415
+ "eval_samples_per_second": 55.212,
1416
+ "eval_steps_per_second": 55.212,
1417
+ "step": 220
1418
+ },
1419
+ {
1420
+ "epoch": 0.63,
1421
+ "learning_rate": 0.000361925198472097,
1422
+ "loss": 0.4863,
1423
+ "step": 221
1424
+ },
1425
+ {
1426
+ "epoch": 0.63,
1427
+ "learning_rate": 0.00036131446238821767,
1428
+ "loss": 0.5185,
1429
+ "step": 222
1430
+ },
1431
+ {
1432
+ "epoch": 0.63,
1433
+ "learning_rate": 0.00036069939092773514,
1434
+ "loss": 0.5846,
1435
+ "step": 223
1436
+ },
1437
+ {
1438
+ "epoch": 0.63,
1439
+ "learning_rate": 0.0003600800006208872,
1440
+ "loss": 0.5416,
1441
+ "step": 224
1442
+ },
1443
+ {
1444
+ "epoch": 0.64,
1445
+ "learning_rate": 0.00035945630811398205,
1446
+ "loss": 0.5783,
1447
+ "step": 225
1448
+ },
1449
+ {
1450
+ "epoch": 0.64,
1451
+ "learning_rate": 0.0003588283301689507,
1452
+ "loss": 0.7388,
1453
+ "step": 226
1454
+ },
1455
+ {
1456
+ "epoch": 0.64,
1457
+ "learning_rate": 0.0003581960836628968,
1458
+ "loss": 0.7164,
1459
+ "step": 227
1460
+ },
1461
+ {
1462
+ "epoch": 0.65,
1463
+ "learning_rate": 0.0003575595855876427,
1464
+ "loss": 0.5729,
1465
+ "step": 228
1466
+ },
1467
+ {
1468
+ "epoch": 0.65,
1469
+ "learning_rate": 0.0003569188530492732,
1470
+ "loss": 0.5475,
1471
+ "step": 229
1472
+ },
1473
+ {
1474
+ "epoch": 0.65,
1475
+ "learning_rate": 0.0003562739032676756,
1476
+ "loss": 0.6107,
1477
+ "step": 230
1478
+ },
1479
+ {
1480
+ "epoch": 0.65,
1481
+ "learning_rate": 0.00035562475357607694,
1482
+ "loss": 0.5441,
1483
+ "step": 231
1484
+ },
1485
+ {
1486
+ "epoch": 0.66,
1487
+ "learning_rate": 0.000354971421420578,
1488
+ "loss": 0.6148,
1489
+ "step": 232
1490
+ },
1491
+ {
1492
+ "epoch": 0.66,
1493
+ "learning_rate": 0.0003543139243596847,
1494
+ "loss": 0.5864,
1495
+ "step": 233
1496
+ },
1497
+ {
1498
+ "epoch": 0.66,
1499
+ "learning_rate": 0.00035365228006383614,
1500
+ "loss": 0.5044,
1501
+ "step": 234
1502
+ },
1503
+ {
1504
+ "epoch": 0.67,
1505
+ "learning_rate": 0.00035298650631492956,
1506
+ "loss": 0.4947,
1507
+ "step": 235
1508
+ },
1509
+ {
1510
+ "epoch": 0.67,
1511
+ "learning_rate": 0.0003523166210058426,
1512
+ "loss": 0.5524,
1513
+ "step": 236
1514
+ },
1515
+ {
1516
+ "epoch": 0.67,
1517
+ "learning_rate": 0.0003516426421399523,
1518
+ "loss": 0.5434,
1519
+ "step": 237
1520
+ },
1521
+ {
1522
+ "epoch": 0.67,
1523
+ "learning_rate": 0.00035096458783065145,
1524
+ "loss": 0.6695,
1525
+ "step": 238
1526
+ },
1527
+ {
1528
+ "epoch": 0.68,
1529
+ "learning_rate": 0.0003502824763008615,
1530
+ "loss": 0.6813,
1531
+ "step": 239
1532
+ },
1533
+ {
1534
+ "epoch": 0.68,
1535
+ "learning_rate": 0.00034959632588254304,
1536
+ "loss": 0.5943,
1537
+ "step": 240
1538
+ },
1539
+ {
1540
+ "epoch": 0.68,
1541
+ "eval_loss": 0.5755711793899536,
1542
+ "eval_runtime": 29.5,
1543
+ "eval_samples_per_second": 55.22,
1544
+ "eval_steps_per_second": 55.22,
1545
+ "step": 240
1546
+ },
1547
+ {
1548
+ "epoch": 0.68,
1549
+ "learning_rate": 0.000348906155016203,
1550
+ "loss": 0.5239,
1551
+ "step": 241
1552
+ },
1553
+ {
1554
+ "epoch": 0.69,
1555
+ "learning_rate": 0.0003482119822503994,
1556
+ "loss": 0.5347,
1557
+ "step": 242
1558
+ },
1559
+ {
1560
+ "epoch": 0.69,
1561
+ "learning_rate": 0.000347513826241242,
1562
+ "loss": 0.5513,
1563
+ "step": 243
1564
+ },
1565
+ {
1566
+ "epoch": 0.69,
1567
+ "learning_rate": 0.0003468117057518921,
1568
+ "loss": 0.6988,
1569
+ "step": 244
1570
+ },
1571
+ {
1572
+ "epoch": 0.69,
1573
+ "learning_rate": 0.000346105639652057,
1574
+ "loss": 0.5591,
1575
+ "step": 245
1576
+ },
1577
+ {
1578
+ "epoch": 0.7,
1579
+ "learning_rate": 0.00034539564691748407,
1580
+ "loss": 0.5305,
1581
+ "step": 246
1582
+ },
1583
+ {
1584
+ "epoch": 0.7,
1585
+ "learning_rate": 0.00034468174662944995,
1586
+ "loss": 0.5492,
1587
+ "step": 247
1588
+ },
1589
+ {
1590
+ "epoch": 0.7,
1591
+ "learning_rate": 0.0003439639579742481,
1592
+ "loss": 0.5907,
1593
+ "step": 248
1594
+ },
1595
+ {
1596
+ "epoch": 0.71,
1597
+ "learning_rate": 0.00034324230024267285,
1598
+ "loss": 0.5596,
1599
+ "step": 249
1600
+ },
1601
+ {
1602
+ "epoch": 0.71,
1603
+ "learning_rate": 0.00034251679282950144,
1604
+ "loss": 0.6163,
1605
+ "step": 250
1606
+ },
1607
+ {
1608
+ "epoch": 0.71,
1609
+ "learning_rate": 0.00034178745523297233,
1610
+ "loss": 0.7016,
1611
+ "step": 251
1612
+ },
1613
+ {
1614
+ "epoch": 0.71,
1615
+ "learning_rate": 0.0003410543070542615,
1616
+ "loss": 0.734,
1617
+ "step": 252
1618
+ },
1619
+ {
1620
+ "epoch": 0.72,
1621
+ "learning_rate": 0.00034031736799695537,
1622
+ "loss": 0.6601,
1623
+ "step": 253
1624
+ },
1625
+ {
1626
+ "epoch": 0.72,
1627
+ "learning_rate": 0.0003395766578665215,
1628
+ "loss": 0.5738,
1629
+ "step": 254
1630
+ },
1631
+ {
1632
+ "epoch": 0.72,
1633
+ "learning_rate": 0.00033883219656977615,
1634
+ "loss": 0.5691,
1635
+ "step": 255
1636
+ },
1637
+ {
1638
+ "epoch": 0.72,
1639
+ "learning_rate": 0.0003380840041143494,
1640
+ "loss": 0.4958,
1641
+ "step": 256
1642
+ },
1643
+ {
1644
+ "epoch": 0.73,
1645
+ "learning_rate": 0.0003373321006081474,
1646
+ "loss": 0.4613,
1647
+ "step": 257
1648
+ },
1649
+ {
1650
+ "epoch": 0.73,
1651
+ "learning_rate": 0.00033657650625881183,
1652
+ "loss": 0.5939,
1653
+ "step": 258
1654
+ },
1655
+ {
1656
+ "epoch": 0.73,
1657
+ "learning_rate": 0.0003358172413731772,
1658
+ "loss": 0.6093,
1659
+ "step": 259
1660
+ },
1661
+ {
1662
+ "epoch": 0.74,
1663
+ "learning_rate": 0.00033505432635672457,
1664
+ "loss": 0.5029,
1665
+ "step": 260
1666
+ },
1667
+ {
1668
+ "epoch": 0.74,
1669
+ "eval_loss": 0.5733422040939331,
1670
+ "eval_runtime": 29.5698,
1671
+ "eval_samples_per_second": 55.09,
1672
+ "eval_steps_per_second": 55.09,
1673
+ "step": 260
1674
+ },
1675
+ {
1676
+ "epoch": 0.74,
1677
+ "learning_rate": 0.0003342877817130334,
1678
+ "loss": 0.6983,
1679
+ "step": 261
1680
+ },
1681
+ {
1682
+ "epoch": 0.74,
1683
+ "learning_rate": 0.00033351762804323073,
1684
+ "loss": 0.5567,
1685
+ "step": 262
1686
+ },
1687
+ {
1688
+ "epoch": 0.74,
1689
+ "learning_rate": 0.0003327438860454372,
1690
+ "loss": 0.5081,
1691
+ "step": 263
1692
+ },
1693
+ {
1694
+ "epoch": 0.75,
1695
+ "learning_rate": 0.00033196657651421066,
1696
+ "loss": 0.5475,
1697
+ "step": 264
1698
+ },
1699
+ {
1700
+ "epoch": 0.75,
1701
+ "learning_rate": 0.000331185720339988,
1702
+ "loss": 0.5527,
1703
+ "step": 265
1704
+ },
1705
+ {
1706
+ "epoch": 0.75,
1707
+ "learning_rate": 0.0003304013385085229,
1708
+ "loss": 0.5244,
1709
+ "step": 266
1710
+ },
1711
+ {
1712
+ "epoch": 0.76,
1713
+ "learning_rate": 0.0003296134521003222,
1714
+ "loss": 0.6156,
1715
+ "step": 267
1716
+ },
1717
+ {
1718
+ "epoch": 0.76,
1719
+ "learning_rate": 0.0003288220822900796,
1720
+ "loss": 0.5203,
1721
+ "step": 268
1722
+ },
1723
+ {
1724
+ "epoch": 0.76,
1725
+ "learning_rate": 0.00032802725034610593,
1726
+ "loss": 0.5844,
1727
+ "step": 269
1728
+ },
1729
+ {
1730
+ "epoch": 0.76,
1731
+ "learning_rate": 0.0003272289776297583,
1732
+ "loss": 0.6262,
1733
+ "step": 270
1734
+ },
1735
+ {
1736
+ "epoch": 0.77,
1737
+ "learning_rate": 0.0003264272855948653,
1738
+ "loss": 0.552,
1739
+ "step": 271
1740
+ },
1741
+ {
1742
+ "epoch": 0.77,
1743
+ "learning_rate": 0.0003256221957871512,
1744
+ "loss": 0.5817,
1745
+ "step": 272
1746
+ },
1747
+ {
1748
+ "epoch": 0.77,
1749
+ "learning_rate": 0.0003248137298436561,
1750
+ "loss": 0.4906,
1751
+ "step": 273
1752
+ },
1753
+ {
1754
+ "epoch": 0.78,
1755
+ "learning_rate": 0.00032400190949215507,
1756
+ "loss": 0.4638,
1757
+ "step": 274
1758
+ },
1759
+ {
1760
+ "epoch": 0.78,
1761
+ "learning_rate": 0.0003231867565505737,
1762
+ "loss": 0.532,
1763
+ "step": 275
1764
+ },
1765
+ {
1766
+ "epoch": 0.78,
1767
+ "learning_rate": 0.0003223682929264022,
1768
+ "loss": 0.572,
1769
+ "step": 276
1770
+ },
1771
+ {
1772
+ "epoch": 0.78,
1773
+ "learning_rate": 0.0003215465406161064,
1774
+ "loss": 0.6238,
1775
+ "step": 277
1776
+ },
1777
+ {
1778
+ "epoch": 0.79,
1779
+ "learning_rate": 0.0003207215217045363,
1780
+ "loss": 0.5751,
1781
+ "step": 278
1782
+ },
1783
+ {
1784
+ "epoch": 0.79,
1785
+ "learning_rate": 0.0003198932583643332,
1786
+ "loss": 0.5688,
1787
+ "step": 279
1788
+ },
1789
+ {
1790
+ "epoch": 0.79,
1791
+ "learning_rate": 0.0003190617728553332,
1792
+ "loss": 0.5482,
1793
+ "step": 280
1794
+ },
1795
+ {
1796
+ "epoch": 0.79,
1797
+ "eval_loss": 0.5711647272109985,
1798
+ "eval_runtime": 29.618,
1799
+ "eval_samples_per_second": 55.0,
1800
+ "eval_steps_per_second": 55.0,
1801
+ "step": 280
1802
+ },
1803
+ {
1804
+ "epoch": 0.8,
1805
+ "learning_rate": 0.0003182270875239694,
1806
+ "loss": 0.6118,
1807
+ "step": 281
1808
+ },
1809
+ {
1810
+ "epoch": 0.8,
1811
+ "learning_rate": 0.0003173892248026708,
1812
+ "loss": 0.5704,
1813
+ "step": 282
1814
+ },
1815
+ {
1816
+ "epoch": 0.8,
1817
+ "learning_rate": 0.0003165482072092602,
1818
+ "loss": 0.6117,
1819
+ "step": 283
1820
+ },
1821
+ {
1822
+ "epoch": 0.8,
1823
+ "learning_rate": 0.00031570405734634814,
1824
+ "loss": 0.5798,
1825
+ "step": 284
1826
+ },
1827
+ {
1828
+ "epoch": 0.81,
1829
+ "learning_rate": 0.0003148567979007261,
1830
+ "loss": 0.5585,
1831
+ "step": 285
1832
+ },
1833
+ {
1834
+ "epoch": 0.81,
1835
+ "learning_rate": 0.00031400645164275653,
1836
+ "loss": 0.6552,
1837
+ "step": 286
1838
+ },
1839
+ {
1840
+ "epoch": 0.81,
1841
+ "learning_rate": 0.000313153041425761,
1842
+ "loss": 0.5421,
1843
+ "step": 287
1844
+ },
1845
+ {
1846
+ "epoch": 0.82,
1847
+ "learning_rate": 0.0003122965901854058,
1848
+ "loss": 0.497,
1849
+ "step": 288
1850
+ },
1851
+ {
1852
+ "epoch": 0.82,
1853
+ "learning_rate": 0.0003114371209390857,
1854
+ "loss": 0.5207,
1855
+ "step": 289
1856
+ },
1857
+ {
1858
+ "epoch": 0.82,
1859
+ "learning_rate": 0.00031057465678530543,
1860
+ "loss": 0.5028,
1861
+ "step": 290
1862
+ },
1863
+ {
1864
+ "epoch": 0.82,
1865
+ "learning_rate": 0.0003097092209030588,
1866
+ "loss": 0.4905,
1867
+ "step": 291
1868
+ },
1869
+ {
1870
+ "epoch": 0.83,
1871
+ "learning_rate": 0.0003088408365512055,
1872
+ "loss": 0.6156,
1873
+ "step": 292
1874
+ },
1875
+ {
1876
+ "epoch": 0.83,
1877
+ "learning_rate": 0.00030796952706784646,
1878
+ "loss": 0.5414,
1879
+ "step": 293
1880
+ },
1881
+ {
1882
+ "epoch": 0.83,
1883
+ "learning_rate": 0.0003070953158696967,
1884
+ "loss": 0.4219,
1885
+ "step": 294
1886
+ },
1887
+ {
1888
+ "epoch": 0.84,
1889
+ "learning_rate": 0.00030621822645145506,
1890
+ "loss": 0.6778,
1891
+ "step": 295
1892
+ },
1893
+ {
1894
+ "epoch": 0.84,
1895
+ "learning_rate": 0.000305338282385174,
1896
+ "loss": 0.5173,
1897
+ "step": 296
1898
+ },
1899
+ {
1900
+ "epoch": 0.84,
1901
+ "learning_rate": 0.00030445550731962546,
1902
+ "loss": 0.5959,
1903
+ "step": 297
1904
+ },
1905
+ {
1906
+ "epoch": 0.84,
1907
+ "learning_rate": 0.0003035699249796651,
1908
+ "loss": 0.6535,
1909
+ "step": 298
1910
+ },
1911
+ {
1912
+ "epoch": 0.85,
1913
+ "learning_rate": 0.0003026815591655953,
1914
+ "loss": 0.6306,
1915
+ "step": 299
1916
+ },
1917
+ {
1918
+ "epoch": 0.85,
1919
+ "learning_rate": 0.00030179043375252486,
1920
+ "loss": 0.5413,
1921
+ "step": 300
1922
+ },
1923
+ {
1924
+ "epoch": 0.85,
1925
+ "eval_loss": 0.5820406675338745,
1926
+ "eval_runtime": 29.5338,
1927
+ "eval_samples_per_second": 55.157,
1928
+ "eval_steps_per_second": 55.157,
1929
+ "step": 300
1930
+ },
1931
+ {
1932
+ "epoch": 0.85,
1933
+ "learning_rate": 0.000300896572689728,
1934
+ "loss": 0.5046,
1935
+ "step": 301
1936
+ },
1937
+ {
1938
+ "epoch": 0.86,
1939
+ "learning_rate": 0.00030000000000000003,
1940
+ "loss": 0.6131,
1941
+ "step": 302
1942
+ },
1943
+ {
1944
+ "epoch": 0.86,
1945
+ "learning_rate": 0.00029910073977901236,
1946
+ "loss": 0.4598,
1947
+ "step": 303
1948
+ },
1949
+ {
1950
+ "epoch": 0.86,
1951
+ "learning_rate": 0.00029819881619466443,
1952
+ "loss": 0.5017,
1953
+ "step": 304
1954
+ },
1955
+ {
1956
+ "epoch": 0.86,
1957
+ "learning_rate": 0.00029729425348643467,
1958
+ "loss": 0.6571,
1959
+ "step": 305
1960
+ },
1961
+ {
1962
+ "epoch": 0.87,
1963
+ "learning_rate": 0.00029638707596472855,
1964
+ "loss": 0.577,
1965
+ "step": 306
1966
+ },
1967
+ {
1968
+ "epoch": 0.87,
1969
+ "learning_rate": 0.00029547730801022544,
1970
+ "loss": 0.5014,
1971
+ "step": 307
1972
+ },
1973
+ {
1974
+ "epoch": 0.87,
1975
+ "learning_rate": 0.00029456497407322365,
1976
+ "loss": 0.4571,
1977
+ "step": 308
1978
+ },
1979
+ {
1980
+ "epoch": 0.87,
1981
+ "learning_rate": 0.0002936500986729829,
1982
+ "loss": 0.5818,
1983
+ "step": 309
1984
+ },
1985
+ {
1986
+ "epoch": 0.88,
1987
+ "learning_rate": 0.0002927327063970655,
1988
+ "loss": 0.5138,
1989
+ "step": 310
1990
+ },
1991
+ {
1992
+ "epoch": 0.88,
1993
+ "learning_rate": 0.00029181282190067574,
1994
+ "loss": 0.5927,
1995
+ "step": 311
1996
+ },
1997
+ {
1998
+ "epoch": 0.88,
1999
+ "learning_rate": 0.00029089046990599685,
2000
+ "loss": 0.5297,
2001
+ "step": 312
2002
+ },
2003
+ {
2004
+ "epoch": 0.89,
2005
+ "learning_rate": 0.0002899656752015272,
2006
+ "loss": 0.5693,
2007
+ "step": 313
2008
+ },
2009
+ {
2010
+ "epoch": 0.89,
2011
+ "learning_rate": 0.0002890384626414134,
2012
+ "loss": 0.5579,
2013
+ "step": 314
2014
+ },
2015
+ {
2016
+ "epoch": 0.89,
2017
+ "learning_rate": 0.000288108857144783,
2018
+ "loss": 0.6165,
2019
+ "step": 315
2020
+ },
2021
+ {
2022
+ "epoch": 0.89,
2023
+ "learning_rate": 0.00028717688369507425,
2024
+ "loss": 0.4311,
2025
+ "step": 316
2026
+ },
2027
+ {
2028
+ "epoch": 0.9,
2029
+ "learning_rate": 0.00028624256733936486,
2030
+ "loss": 0.5919,
2031
+ "step": 317
2032
+ },
2033
+ {
2034
+ "epoch": 0.9,
2035
+ "learning_rate": 0.0002853059331876991,
2036
+ "loss": 0.6499,
2037
+ "step": 318
2038
+ },
2039
+ {
2040
+ "epoch": 0.9,
2041
+ "learning_rate": 0.0002843670064124125,
2042
+ "loss": 0.5486,
2043
+ "step": 319
2044
+ },
2045
+ {
2046
+ "epoch": 0.91,
2047
+ "learning_rate": 0.0002834258122474556,
2048
+ "loss": 0.657,
2049
+ "step": 320
2050
+ },
2051
+ {
2052
+ "epoch": 0.91,
2053
+ "eval_loss": 0.5696084499359131,
2054
+ "eval_runtime": 29.5183,
2055
+ "eval_samples_per_second": 55.186,
2056
+ "eval_steps_per_second": 55.186,
2057
+ "step": 320
2058
+ },
2059
+ {
2060
+ "epoch": 0.91,
2061
+ "learning_rate": 0.0002824823759877159,
2062
+ "loss": 0.6218,
2063
+ "step": 321
2064
+ },
2065
+ {
2066
+ "epoch": 0.91,
2067
+ "learning_rate": 0.00028153672298833775,
2068
+ "loss": 0.4651,
2069
+ "step": 322
2070
+ },
2071
+ {
2072
+ "epoch": 0.91,
2073
+ "learning_rate": 0.0002805888786640412,
2074
+ "loss": 0.5388,
2075
+ "step": 323
2076
+ },
2077
+ {
2078
+ "epoch": 0.92,
2079
+ "learning_rate": 0.00027963886848843863,
2080
+ "loss": 0.4579,
2081
+ "step": 324
2082
+ },
2083
+ {
2084
+ "epoch": 0.92,
2085
+ "learning_rate": 0.00027868671799335053,
2086
+ "loss": 0.6092,
2087
+ "step": 325
2088
+ },
2089
+ {
2090
+ "epoch": 0.92,
2091
+ "learning_rate": 0.00027773245276811905,
2092
+ "loss": 0.711,
2093
+ "step": 326
2094
+ },
2095
+ {
2096
+ "epoch": 0.93,
2097
+ "learning_rate": 0.00027677609845892055,
2098
+ "loss": 0.6601,
2099
+ "step": 327
2100
+ },
2101
+ {
2102
+ "epoch": 0.93,
2103
+ "learning_rate": 0.0002758176807680759,
2104
+ "loss": 0.4271,
2105
+ "step": 328
2106
+ },
2107
+ {
2108
+ "epoch": 0.93,
2109
+ "learning_rate": 0.00027485722545336023,
2110
+ "loss": 0.5561,
2111
+ "step": 329
2112
+ },
2113
+ {
2114
+ "epoch": 0.93,
2115
+ "learning_rate": 0.00027389475832731035,
2116
+ "loss": 0.4772,
2117
+ "step": 330
2118
+ },
2119
+ {
2120
+ "epoch": 0.94,
2121
+ "learning_rate": 0.00027293030525653105,
2122
+ "loss": 0.56,
2123
+ "step": 331
2124
+ },
2125
+ {
2126
+ "epoch": 0.94,
2127
+ "learning_rate": 0.0002719638921610002,
2128
+ "loss": 0.5905,
2129
+ "step": 332
2130
+ },
2131
+ {
2132
+ "epoch": 0.94,
2133
+ "learning_rate": 0.0002709955450133718,
2134
+ "loss": 0.4981,
2135
+ "step": 333
2136
+ },
2137
+ {
2138
+ "epoch": 0.95,
2139
+ "learning_rate": 0.0002700252898382781,
2140
+ "loss": 0.5701,
2141
+ "step": 334
2142
+ },
2143
+ {
2144
+ "epoch": 0.95,
2145
+ "learning_rate": 0.0002690531527116304,
2146
+ "loss": 0.4725,
2147
+ "step": 335
2148
+ },
2149
+ {
2150
+ "epoch": 0.95,
2151
+ "learning_rate": 0.00026807915975991765,
2152
+ "loss": 0.5022,
2153
+ "step": 336
2154
+ },
2155
+ {
2156
+ "epoch": 0.95,
2157
+ "learning_rate": 0.000267103337159505,
2158
+ "loss": 0.4953,
2159
+ "step": 337
2160
+ },
2161
+ {
2162
+ "epoch": 0.96,
2163
+ "learning_rate": 0.0002661257111359299,
2164
+ "loss": 0.5762,
2165
+ "step": 338
2166
+ },
2167
+ {
2168
+ "epoch": 0.96,
2169
+ "learning_rate": 0.0002651463079631973,
2170
+ "loss": 0.6713,
2171
+ "step": 339
2172
+ },
2173
+ {
2174
+ "epoch": 0.96,
2175
+ "learning_rate": 0.00026416515396307353,
2176
+ "loss": 0.506,
2177
+ "step": 340
2178
+ },
2179
+ {
2180
+ "epoch": 0.96,
2181
+ "eval_loss": 0.5838707685470581,
2182
+ "eval_runtime": 29.495,
2183
+ "eval_samples_per_second": 55.23,
2184
+ "eval_steps_per_second": 55.23,
2185
+ "step": 340
2186
+ },
2187
+ {
2188
+ "epoch": 0.97,
2189
+ "learning_rate": 0.0002631822755043793,
2190
+ "loss": 0.5368,
2191
+ "step": 341
2192
+ },
2193
+ {
2194
+ "epoch": 0.97,
2195
+ "learning_rate": 0.00026219769900228014,
2196
+ "loss": 0.5509,
2197
+ "step": 342
2198
+ },
2199
+ {
2200
+ "epoch": 0.97,
2201
+ "learning_rate": 0.0002612114509175775,
2202
+ "loss": 0.5365,
2203
+ "step": 343
2204
+ },
2205
+ {
2206
+ "epoch": 0.97,
2207
+ "learning_rate": 0.0002602235577559969,
2208
+ "loss": 0.6527,
2209
+ "step": 344
2210
+ },
2211
+ {
2212
+ "epoch": 0.98,
2213
+ "learning_rate": 0.0002592340460674759,
2214
+ "loss": 0.4975,
2215
+ "step": 345
2216
+ },
2217
+ {
2218
+ "epoch": 0.98,
2219
+ "learning_rate": 0.00025824294244545045,
2220
+ "loss": 0.6552,
2221
+ "step": 346
2222
+ },
2223
+ {
2224
+ "epoch": 0.98,
2225
+ "learning_rate": 0.00025725027352614015,
2226
+ "loss": 0.5523,
2227
+ "step": 347
2228
+ },
2229
+ {
2230
+ "epoch": 0.99,
2231
+ "learning_rate": 0.00025625606598783256,
2232
+ "loss": 0.6078,
2233
+ "step": 348
2234
+ },
2235
+ {
2236
+ "epoch": 0.99,
2237
+ "learning_rate": 0.0002552603465501661,
2238
+ "loss": 0.4592,
2239
+ "step": 349
2240
+ },
2241
+ {
2242
+ "epoch": 0.99,
2243
+ "learning_rate": 0.0002542631419734118,
2244
+ "loss": 0.587,
2245
+ "step": 350
2246
+ },
2247
+ {
2248
+ "epoch": 0.99,
2249
+ "learning_rate": 0.00025326447905775446,
2250
+ "loss": 0.5689,
2251
+ "step": 351
2252
+ },
2253
+ {
2254
+ "epoch": 1.0,
2255
+ "learning_rate": 0.00025226438464257217,
2256
+ "loss": 0.4961,
2257
+ "step": 352
2258
+ },
2259
+ {
2260
+ "epoch": 1.0,
2261
+ "learning_rate": 0.00025126288560571483,
2262
+ "loss": 0.4735,
2263
+ "step": 353
2264
+ }
2265
+ ],
2266
+ "logging_steps": 1,
2267
+ "max_steps": 706,
2268
+ "num_train_epochs": 2,
2269
+ "save_steps": 500,
2270
+ "total_flos": 9.231730747386102e+17,
2271
+ "trial_name": null,
2272
+ "trial_params": null
2273
+ }
checkpoint-353/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fc29491a898700f15de2024fec703fbc3c0e47ff2a1808b6210d1914f87ee43
3
+ size 4475
checkpoint-706/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: meta-llama/Llama-2-7b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.0.dev0
checkpoint-706/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "meta-llama/Llama-2-7b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 16,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "gate_proj",
20
+ "up_proj",
21
+ "q_proj",
22
+ "k_proj",
23
+ "down_proj",
24
+ "v_proj",
25
+ "o_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-706/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20c54b4128d3990ad30d82d6e66838a8bd6bc36e4432c3f624f2c7aa1421f118
3
+ size 160069389
checkpoint-706/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8908522491fda83ea1584925a4b68602dde08aa0654af93dca92100e8add7e2e
3
+ size 320084485
checkpoint-706/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d39a6df6dbabc0651eb45454d0c57729e47a211c8689d8ae2ee43a00d90bf501
3
+ size 14575
checkpoint-706/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af6c545a34f8af97ab455a0b9974ed9cbf507668d9682a06a4e369c63d136974
3
+ size 627
checkpoint-706/trainer_state.json ADDED
@@ -0,0 +1,4535 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.9989382410192886,
5
+ "eval_steps": 20,
6
+ "global_step": 706,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 4.000000000000001e-06,
14
+ "loss": 3.9795,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 8.000000000000001e-06,
20
+ "loss": 3.2944,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 1.2e-05,
26
+ "loss": 4.0746,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 1.6000000000000003e-05,
32
+ "loss": 4.1905,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 2e-05,
38
+ "loss": 4.4667,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.02,
43
+ "learning_rate": 2.4e-05,
44
+ "loss": 4.8488,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 2.8000000000000003e-05,
50
+ "loss": 4.1473,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 3.2000000000000005e-05,
56
+ "loss": 3.7834,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.03,
61
+ "learning_rate": 3.6e-05,
62
+ "loss": 3.2778,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.03,
67
+ "learning_rate": 4e-05,
68
+ "loss": 3.1975,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.03,
73
+ "learning_rate": 4.4000000000000006e-05,
74
+ "loss": 2.7504,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.03,
79
+ "learning_rate": 4.8e-05,
80
+ "loss": 2.5047,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.04,
85
+ "learning_rate": 5.2000000000000004e-05,
86
+ "loss": 2.3366,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.04,
91
+ "learning_rate": 5.6000000000000006e-05,
92
+ "loss": 2.1348,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.04,
97
+ "learning_rate": 6e-05,
98
+ "loss": 1.6171,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.05,
103
+ "learning_rate": 6.400000000000001e-05,
104
+ "loss": 1.2901,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.05,
109
+ "learning_rate": 6.800000000000001e-05,
110
+ "loss": 1.1358,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.05,
115
+ "learning_rate": 7.2e-05,
116
+ "loss": 0.9456,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.05,
121
+ "learning_rate": 7.6e-05,
122
+ "loss": 0.8864,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.06,
127
+ "learning_rate": 8e-05,
128
+ "loss": 0.8756,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.06,
133
+ "eval_loss": 0.7110548615455627,
134
+ "eval_runtime": 29.5129,
135
+ "eval_samples_per_second": 55.196,
136
+ "eval_steps_per_second": 55.196,
137
+ "step": 20
138
+ },
139
+ {
140
+ "epoch": 0.06,
141
+ "learning_rate": 8.4e-05,
142
+ "loss": 0.8825,
143
+ "step": 21
144
+ },
145
+ {
146
+ "epoch": 0.06,
147
+ "learning_rate": 8.800000000000001e-05,
148
+ "loss": 0.822,
149
+ "step": 22
150
+ },
151
+ {
152
+ "epoch": 0.07,
153
+ "learning_rate": 9.200000000000001e-05,
154
+ "loss": 0.8001,
155
+ "step": 23
156
+ },
157
+ {
158
+ "epoch": 0.07,
159
+ "learning_rate": 9.6e-05,
160
+ "loss": 0.8978,
161
+ "step": 24
162
+ },
163
+ {
164
+ "epoch": 0.07,
165
+ "learning_rate": 0.0001,
166
+ "loss": 0.8214,
167
+ "step": 25
168
+ },
169
+ {
170
+ "epoch": 0.07,
171
+ "learning_rate": 0.00010400000000000001,
172
+ "loss": 0.8012,
173
+ "step": 26
174
+ },
175
+ {
176
+ "epoch": 0.08,
177
+ "learning_rate": 0.00010800000000000001,
178
+ "loss": 0.9169,
179
+ "step": 27
180
+ },
181
+ {
182
+ "epoch": 0.08,
183
+ "learning_rate": 0.00011200000000000001,
184
+ "loss": 0.8436,
185
+ "step": 28
186
+ },
187
+ {
188
+ "epoch": 0.08,
189
+ "learning_rate": 0.000116,
190
+ "loss": 0.738,
191
+ "step": 29
192
+ },
193
+ {
194
+ "epoch": 0.08,
195
+ "learning_rate": 0.00012,
196
+ "loss": 0.8238,
197
+ "step": 30
198
+ },
199
+ {
200
+ "epoch": 0.09,
201
+ "learning_rate": 0.000124,
202
+ "loss": 0.85,
203
+ "step": 31
204
+ },
205
+ {
206
+ "epoch": 0.09,
207
+ "learning_rate": 0.00012800000000000002,
208
+ "loss": 0.8292,
209
+ "step": 32
210
+ },
211
+ {
212
+ "epoch": 0.09,
213
+ "learning_rate": 0.000132,
214
+ "loss": 0.8739,
215
+ "step": 33
216
+ },
217
+ {
218
+ "epoch": 0.1,
219
+ "learning_rate": 0.00013600000000000003,
220
+ "loss": 0.8456,
221
+ "step": 34
222
+ },
223
+ {
224
+ "epoch": 0.1,
225
+ "learning_rate": 0.00014,
226
+ "loss": 0.7558,
227
+ "step": 35
228
+ },
229
+ {
230
+ "epoch": 0.1,
231
+ "learning_rate": 0.000144,
232
+ "loss": 0.6982,
233
+ "step": 36
234
+ },
235
+ {
236
+ "epoch": 0.1,
237
+ "learning_rate": 0.000148,
238
+ "loss": 0.7985,
239
+ "step": 37
240
+ },
241
+ {
242
+ "epoch": 0.11,
243
+ "learning_rate": 0.000152,
244
+ "loss": 0.7995,
245
+ "step": 38
246
+ },
247
+ {
248
+ "epoch": 0.11,
249
+ "learning_rate": 0.00015600000000000002,
250
+ "loss": 0.5988,
251
+ "step": 39
252
+ },
253
+ {
254
+ "epoch": 0.11,
255
+ "learning_rate": 0.00016,
256
+ "loss": 0.9058,
257
+ "step": 40
258
+ },
259
+ {
260
+ "epoch": 0.11,
261
+ "eval_loss": 0.6764179468154907,
262
+ "eval_runtime": 29.6679,
263
+ "eval_samples_per_second": 54.908,
264
+ "eval_steps_per_second": 54.908,
265
+ "step": 40
266
+ },
267
+ {
268
+ "epoch": 0.12,
269
+ "learning_rate": 0.000164,
270
+ "loss": 0.8351,
271
+ "step": 41
272
+ },
273
+ {
274
+ "epoch": 0.12,
275
+ "learning_rate": 0.000168,
276
+ "loss": 0.8182,
277
+ "step": 42
278
+ },
279
+ {
280
+ "epoch": 0.12,
281
+ "learning_rate": 0.000172,
282
+ "loss": 0.8694,
283
+ "step": 43
284
+ },
285
+ {
286
+ "epoch": 0.12,
287
+ "learning_rate": 0.00017600000000000002,
288
+ "loss": 0.7743,
289
+ "step": 44
290
+ },
291
+ {
292
+ "epoch": 0.13,
293
+ "learning_rate": 0.00018,
294
+ "loss": 0.7448,
295
+ "step": 45
296
+ },
297
+ {
298
+ "epoch": 0.13,
299
+ "learning_rate": 0.00018400000000000003,
300
+ "loss": 0.8416,
301
+ "step": 46
302
+ },
303
+ {
304
+ "epoch": 0.13,
305
+ "learning_rate": 0.000188,
306
+ "loss": 0.7496,
307
+ "step": 47
308
+ },
309
+ {
310
+ "epoch": 0.14,
311
+ "learning_rate": 0.000192,
312
+ "loss": 0.7353,
313
+ "step": 48
314
+ },
315
+ {
316
+ "epoch": 0.14,
317
+ "learning_rate": 0.000196,
318
+ "loss": 0.9026,
319
+ "step": 49
320
+ },
321
+ {
322
+ "epoch": 0.14,
323
+ "learning_rate": 0.0002,
324
+ "loss": 0.8415,
325
+ "step": 50
326
+ },
327
+ {
328
+ "epoch": 0.14,
329
+ "learning_rate": 0.00020400000000000003,
330
+ "loss": 0.7606,
331
+ "step": 51
332
+ },
333
+ {
334
+ "epoch": 0.15,
335
+ "learning_rate": 0.00020800000000000001,
336
+ "loss": 0.743,
337
+ "step": 52
338
+ },
339
+ {
340
+ "epoch": 0.15,
341
+ "learning_rate": 0.00021200000000000003,
342
+ "loss": 0.7478,
343
+ "step": 53
344
+ },
345
+ {
346
+ "epoch": 0.15,
347
+ "learning_rate": 0.00021600000000000002,
348
+ "loss": 0.6924,
349
+ "step": 54
350
+ },
351
+ {
352
+ "epoch": 0.16,
353
+ "learning_rate": 0.00022000000000000003,
354
+ "loss": 0.9163,
355
+ "step": 55
356
+ },
357
+ {
358
+ "epoch": 0.16,
359
+ "learning_rate": 0.00022400000000000002,
360
+ "loss": 0.7332,
361
+ "step": 56
362
+ },
363
+ {
364
+ "epoch": 0.16,
365
+ "learning_rate": 0.00022799999999999999,
366
+ "loss": 0.7678,
367
+ "step": 57
368
+ },
369
+ {
370
+ "epoch": 0.16,
371
+ "learning_rate": 0.000232,
372
+ "loss": 0.7561,
373
+ "step": 58
374
+ },
375
+ {
376
+ "epoch": 0.17,
377
+ "learning_rate": 0.000236,
378
+ "loss": 0.8494,
379
+ "step": 59
380
+ },
381
+ {
382
+ "epoch": 0.17,
383
+ "learning_rate": 0.00024,
384
+ "loss": 0.7526,
385
+ "step": 60
386
+ },
387
+ {
388
+ "epoch": 0.17,
389
+ "eval_loss": 0.6668684482574463,
390
+ "eval_runtime": 29.5308,
391
+ "eval_samples_per_second": 55.163,
392
+ "eval_steps_per_second": 55.163,
393
+ "step": 60
394
+ },
395
+ {
396
+ "epoch": 0.17,
397
+ "learning_rate": 0.000244,
398
+ "loss": 0.7944,
399
+ "step": 61
400
+ },
401
+ {
402
+ "epoch": 0.18,
403
+ "learning_rate": 0.000248,
404
+ "loss": 0.7107,
405
+ "step": 62
406
+ },
407
+ {
408
+ "epoch": 0.18,
409
+ "learning_rate": 0.000252,
410
+ "loss": 0.7443,
411
+ "step": 63
412
+ },
413
+ {
414
+ "epoch": 0.18,
415
+ "learning_rate": 0.00025600000000000004,
416
+ "loss": 0.7802,
417
+ "step": 64
418
+ },
419
+ {
420
+ "epoch": 0.18,
421
+ "learning_rate": 0.00026000000000000003,
422
+ "loss": 0.6785,
423
+ "step": 65
424
+ },
425
+ {
426
+ "epoch": 0.19,
427
+ "learning_rate": 0.000264,
428
+ "loss": 0.7853,
429
+ "step": 66
430
+ },
431
+ {
432
+ "epoch": 0.19,
433
+ "learning_rate": 0.000268,
434
+ "loss": 0.8059,
435
+ "step": 67
436
+ },
437
+ {
438
+ "epoch": 0.19,
439
+ "learning_rate": 0.00027200000000000005,
440
+ "loss": 0.6702,
441
+ "step": 68
442
+ },
443
+ {
444
+ "epoch": 0.2,
445
+ "learning_rate": 0.000276,
446
+ "loss": 0.7784,
447
+ "step": 69
448
+ },
449
+ {
450
+ "epoch": 0.2,
451
+ "learning_rate": 0.00028,
452
+ "loss": 0.7447,
453
+ "step": 70
454
+ },
455
+ {
456
+ "epoch": 0.2,
457
+ "learning_rate": 0.000284,
458
+ "loss": 0.6466,
459
+ "step": 71
460
+ },
461
+ {
462
+ "epoch": 0.2,
463
+ "learning_rate": 0.000288,
464
+ "loss": 0.6549,
465
+ "step": 72
466
+ },
467
+ {
468
+ "epoch": 0.21,
469
+ "learning_rate": 0.000292,
470
+ "loss": 0.6841,
471
+ "step": 73
472
+ },
473
+ {
474
+ "epoch": 0.21,
475
+ "learning_rate": 0.000296,
476
+ "loss": 0.6441,
477
+ "step": 74
478
+ },
479
+ {
480
+ "epoch": 0.21,
481
+ "learning_rate": 0.00030000000000000003,
482
+ "loss": 0.6777,
483
+ "step": 75
484
+ },
485
+ {
486
+ "epoch": 0.22,
487
+ "learning_rate": 0.000304,
488
+ "loss": 0.7301,
489
+ "step": 76
490
+ },
491
+ {
492
+ "epoch": 0.22,
493
+ "learning_rate": 0.000308,
494
+ "loss": 0.692,
495
+ "step": 77
496
+ },
497
+ {
498
+ "epoch": 0.22,
499
+ "learning_rate": 0.00031200000000000005,
500
+ "loss": 0.7697,
501
+ "step": 78
502
+ },
503
+ {
504
+ "epoch": 0.22,
505
+ "learning_rate": 0.00031600000000000004,
506
+ "loss": 0.6374,
507
+ "step": 79
508
+ },
509
+ {
510
+ "epoch": 0.23,
511
+ "learning_rate": 0.00032,
512
+ "loss": 0.6926,
513
+ "step": 80
514
+ },
515
+ {
516
+ "epoch": 0.23,
517
+ "eval_loss": 0.6363404989242554,
518
+ "eval_runtime": 29.5123,
519
+ "eval_samples_per_second": 55.197,
520
+ "eval_steps_per_second": 55.197,
521
+ "step": 80
522
+ },
523
+ {
524
+ "epoch": 0.23,
525
+ "learning_rate": 0.000324,
526
+ "loss": 0.7258,
527
+ "step": 81
528
+ },
529
+ {
530
+ "epoch": 0.23,
531
+ "learning_rate": 0.000328,
532
+ "loss": 0.6556,
533
+ "step": 82
534
+ },
535
+ {
536
+ "epoch": 0.24,
537
+ "learning_rate": 0.000332,
538
+ "loss": 0.6122,
539
+ "step": 83
540
+ },
541
+ {
542
+ "epoch": 0.24,
543
+ "learning_rate": 0.000336,
544
+ "loss": 0.6915,
545
+ "step": 84
546
+ },
547
+ {
548
+ "epoch": 0.24,
549
+ "learning_rate": 0.00034,
550
+ "loss": 0.7711,
551
+ "step": 85
552
+ },
553
+ {
554
+ "epoch": 0.24,
555
+ "learning_rate": 0.000344,
556
+ "loss": 0.6637,
557
+ "step": 86
558
+ },
559
+ {
560
+ "epoch": 0.25,
561
+ "learning_rate": 0.000348,
562
+ "loss": 0.635,
563
+ "step": 87
564
+ },
565
+ {
566
+ "epoch": 0.25,
567
+ "learning_rate": 0.00035200000000000005,
568
+ "loss": 0.648,
569
+ "step": 88
570
+ },
571
+ {
572
+ "epoch": 0.25,
573
+ "learning_rate": 0.00035600000000000003,
574
+ "loss": 0.6904,
575
+ "step": 89
576
+ },
577
+ {
578
+ "epoch": 0.25,
579
+ "learning_rate": 0.00036,
580
+ "loss": 0.7026,
581
+ "step": 90
582
+ },
583
+ {
584
+ "epoch": 0.26,
585
+ "learning_rate": 0.000364,
586
+ "loss": 0.6285,
587
+ "step": 91
588
+ },
589
+ {
590
+ "epoch": 0.26,
591
+ "learning_rate": 0.00036800000000000005,
592
+ "loss": 0.6239,
593
+ "step": 92
594
+ },
595
+ {
596
+ "epoch": 0.26,
597
+ "learning_rate": 0.00037200000000000004,
598
+ "loss": 0.6897,
599
+ "step": 93
600
+ },
601
+ {
602
+ "epoch": 0.27,
603
+ "learning_rate": 0.000376,
604
+ "loss": 0.6162,
605
+ "step": 94
606
+ },
607
+ {
608
+ "epoch": 0.27,
609
+ "learning_rate": 0.00038,
610
+ "loss": 0.6414,
611
+ "step": 95
612
+ },
613
+ {
614
+ "epoch": 0.27,
615
+ "learning_rate": 0.000384,
616
+ "loss": 0.637,
617
+ "step": 96
618
+ },
619
+ {
620
+ "epoch": 0.27,
621
+ "learning_rate": 0.000388,
622
+ "loss": 0.7453,
623
+ "step": 97
624
+ },
625
+ {
626
+ "epoch": 0.28,
627
+ "learning_rate": 0.000392,
628
+ "loss": 0.6462,
629
+ "step": 98
630
+ },
631
+ {
632
+ "epoch": 0.28,
633
+ "learning_rate": 0.00039600000000000003,
634
+ "loss": 0.6717,
635
+ "step": 99
636
+ },
637
+ {
638
+ "epoch": 0.28,
639
+ "learning_rate": 0.0004,
640
+ "loss": 0.6731,
641
+ "step": 100
642
+ },
643
+ {
644
+ "epoch": 0.28,
645
+ "eval_loss": 0.6186901926994324,
646
+ "eval_runtime": 29.5468,
647
+ "eval_samples_per_second": 55.133,
648
+ "eval_steps_per_second": 55.133,
649
+ "step": 100
650
+ },
651
+ {
652
+ "epoch": 0.29,
653
+ "learning_rate": 0.00039999731246874025,
654
+ "loss": 0.6801,
655
+ "step": 101
656
+ },
657
+ {
658
+ "epoch": 0.29,
659
+ "learning_rate": 0.0003999892499471893,
660
+ "loss": 0.6285,
661
+ "step": 102
662
+ },
663
+ {
664
+ "epoch": 0.29,
665
+ "learning_rate": 0.00039997581265202993,
666
+ "loss": 0.6436,
667
+ "step": 103
668
+ },
669
+ {
670
+ "epoch": 0.29,
671
+ "learning_rate": 0.0003999570009443936,
672
+ "loss": 0.7124,
673
+ "step": 104
674
+ },
675
+ {
676
+ "epoch": 0.3,
677
+ "learning_rate": 0.00039993281532985087,
678
+ "loss": 0.6157,
679
+ "step": 105
680
+ },
681
+ {
682
+ "epoch": 0.3,
683
+ "learning_rate": 0.00039990325645839766,
684
+ "loss": 0.6532,
685
+ "step": 106
686
+ },
687
+ {
688
+ "epoch": 0.3,
689
+ "learning_rate": 0.0003998683251244379,
690
+ "loss": 0.6072,
691
+ "step": 107
692
+ },
693
+ {
694
+ "epoch": 0.31,
695
+ "learning_rate": 0.0003998280222667621,
696
+ "loss": 0.6871,
697
+ "step": 108
698
+ },
699
+ {
700
+ "epoch": 0.31,
701
+ "learning_rate": 0.00039978234896852216,
702
+ "loss": 0.6139,
703
+ "step": 109
704
+ },
705
+ {
706
+ "epoch": 0.31,
707
+ "learning_rate": 0.0003997313064572023,
708
+ "loss": 0.7056,
709
+ "step": 110
710
+ },
711
+ {
712
+ "epoch": 0.31,
713
+ "learning_rate": 0.0003996748961045859,
714
+ "loss": 0.5983,
715
+ "step": 111
716
+ },
717
+ {
718
+ "epoch": 0.32,
719
+ "learning_rate": 0.0003996131194267189,
720
+ "loss": 0.5374,
721
+ "step": 112
722
+ },
723
+ {
724
+ "epoch": 0.32,
725
+ "learning_rate": 0.00039954597808386874,
726
+ "loss": 0.6804,
727
+ "step": 113
728
+ },
729
+ {
730
+ "epoch": 0.32,
731
+ "learning_rate": 0.00039947347388048,
732
+ "loss": 0.6254,
733
+ "step": 114
734
+ },
735
+ {
736
+ "epoch": 0.33,
737
+ "learning_rate": 0.00039939560876512585,
738
+ "loss": 0.7221,
739
+ "step": 115
740
+ },
741
+ {
742
+ "epoch": 0.33,
743
+ "learning_rate": 0.0003993123848304556,
744
+ "loss": 0.6417,
745
+ "step": 116
746
+ },
747
+ {
748
+ "epoch": 0.33,
749
+ "learning_rate": 0.0003992238043131386,
750
+ "loss": 0.4836,
751
+ "step": 117
752
+ },
753
+ {
754
+ "epoch": 0.33,
755
+ "learning_rate": 0.0003991298695938038,
756
+ "loss": 0.6186,
757
+ "step": 118
758
+ },
759
+ {
760
+ "epoch": 0.34,
761
+ "learning_rate": 0.0003990305831969761,
762
+ "loss": 0.6362,
763
+ "step": 119
764
+ },
765
+ {
766
+ "epoch": 0.34,
767
+ "learning_rate": 0.00039892594779100866,
768
+ "loss": 0.647,
769
+ "step": 120
770
+ },
771
+ {
772
+ "epoch": 0.34,
773
+ "eval_loss": 0.6162068843841553,
774
+ "eval_runtime": 29.5244,
775
+ "eval_samples_per_second": 55.175,
776
+ "eval_steps_per_second": 55.175,
777
+ "step": 120
778
+ },
779
+ {
780
+ "epoch": 0.34,
781
+ "learning_rate": 0.0003988159661880105,
782
+ "loss": 0.5818,
783
+ "step": 121
784
+ },
785
+ {
786
+ "epoch": 0.35,
787
+ "learning_rate": 0.0003987006413437718,
788
+ "loss": 0.6267,
789
+ "step": 122
790
+ },
791
+ {
792
+ "epoch": 0.35,
793
+ "learning_rate": 0.00039857997635768365,
794
+ "loss": 0.5502,
795
+ "step": 123
796
+ },
797
+ {
798
+ "epoch": 0.35,
799
+ "learning_rate": 0.00039845397447265535,
800
+ "loss": 0.6438,
801
+ "step": 124
802
+ },
803
+ {
804
+ "epoch": 0.35,
805
+ "learning_rate": 0.00039832263907502684,
806
+ "loss": 0.6472,
807
+ "step": 125
808
+ },
809
+ {
810
+ "epoch": 0.36,
811
+ "learning_rate": 0.0003981859736944781,
812
+ "loss": 0.6834,
813
+ "step": 126
814
+ },
815
+ {
816
+ "epoch": 0.36,
817
+ "learning_rate": 0.00039804398200393395,
818
+ "loss": 0.6091,
819
+ "step": 127
820
+ },
821
+ {
822
+ "epoch": 0.36,
823
+ "learning_rate": 0.0003978966678194653,
824
+ "loss": 0.58,
825
+ "step": 128
826
+ },
827
+ {
828
+ "epoch": 0.37,
829
+ "learning_rate": 0.00039774403510018714,
830
+ "loss": 0.5988,
831
+ "step": 129
832
+ },
833
+ {
834
+ "epoch": 0.37,
835
+ "learning_rate": 0.0003975860879481514,
836
+ "loss": 0.6177,
837
+ "step": 130
838
+ },
839
+ {
840
+ "epoch": 0.37,
841
+ "learning_rate": 0.00039742283060823706,
842
+ "loss": 0.5535,
843
+ "step": 131
844
+ },
845
+ {
846
+ "epoch": 0.37,
847
+ "learning_rate": 0.0003972542674680364,
848
+ "loss": 0.7208,
849
+ "step": 132
850
+ },
851
+ {
852
+ "epoch": 0.38,
853
+ "learning_rate": 0.0003970804030577363,
854
+ "loss": 0.626,
855
+ "step": 133
856
+ },
857
+ {
858
+ "epoch": 0.38,
859
+ "learning_rate": 0.0003969012420499972,
860
+ "loss": 0.5747,
861
+ "step": 134
862
+ },
863
+ {
864
+ "epoch": 0.38,
865
+ "learning_rate": 0.00039671678925982723,
866
+ "loss": 0.5567,
867
+ "step": 135
868
+ },
869
+ {
870
+ "epoch": 0.39,
871
+ "learning_rate": 0.00039652704964445275,
872
+ "loss": 0.6814,
873
+ "step": 136
874
+ },
875
+ {
876
+ "epoch": 0.39,
877
+ "learning_rate": 0.00039633202830318526,
878
+ "loss": 0.5917,
879
+ "step": 137
880
+ },
881
+ {
882
+ "epoch": 0.39,
883
+ "learning_rate": 0.0003961317304772842,
884
+ "loss": 0.5793,
885
+ "step": 138
886
+ },
887
+ {
888
+ "epoch": 0.39,
889
+ "learning_rate": 0.00039592616154981633,
890
+ "loss": 0.6533,
891
+ "step": 139
892
+ },
893
+ {
894
+ "epoch": 0.4,
895
+ "learning_rate": 0.00039571532704551083,
896
+ "loss": 0.6219,
897
+ "step": 140
898
+ },
899
+ {
900
+ "epoch": 0.4,
901
+ "eval_loss": 0.6040534377098083,
902
+ "eval_runtime": 29.5629,
903
+ "eval_samples_per_second": 55.103,
904
+ "eval_steps_per_second": 55.103,
905
+ "step": 140
906
+ },
907
+ {
908
+ "epoch": 0.4,
909
+ "learning_rate": 0.0003954992326306109,
910
+ "loss": 0.5167,
911
+ "step": 141
912
+ },
913
+ {
914
+ "epoch": 0.4,
915
+ "learning_rate": 0.00039527788411272143,
916
+ "loss": 0.6516,
917
+ "step": 142
918
+ },
919
+ {
920
+ "epoch": 0.4,
921
+ "learning_rate": 0.00039505128744065314,
922
+ "loss": 0.607,
923
+ "step": 143
924
+ },
925
+ {
926
+ "epoch": 0.41,
927
+ "learning_rate": 0.0003948194487042623,
928
+ "loss": 0.6482,
929
+ "step": 144
930
+ },
931
+ {
932
+ "epoch": 0.41,
933
+ "learning_rate": 0.0003945823741342875,
934
+ "loss": 0.6133,
935
+ "step": 145
936
+ },
937
+ {
938
+ "epoch": 0.41,
939
+ "learning_rate": 0.0003943400701021819,
940
+ "loss": 0.5582,
941
+ "step": 146
942
+ },
943
+ {
944
+ "epoch": 0.42,
945
+ "learning_rate": 0.00039409254311994216,
946
+ "loss": 0.5985,
947
+ "step": 147
948
+ },
949
+ {
950
+ "epoch": 0.42,
951
+ "learning_rate": 0.00039383979983993327,
952
+ "loss": 0.5648,
953
+ "step": 148
954
+ },
955
+ {
956
+ "epoch": 0.42,
957
+ "learning_rate": 0.0003935818470547098,
958
+ "loss": 0.5884,
959
+ "step": 149
960
+ },
961
+ {
962
+ "epoch": 0.42,
963
+ "learning_rate": 0.00039331869169683363,
964
+ "loss": 0.5948,
965
+ "step": 150
966
+ },
967
+ {
968
+ "epoch": 0.43,
969
+ "learning_rate": 0.0003930503408386871,
970
+ "loss": 0.5532,
971
+ "step": 151
972
+ },
973
+ {
974
+ "epoch": 0.43,
975
+ "learning_rate": 0.00039277680169228364,
976
+ "loss": 0.6034,
977
+ "step": 152
978
+ },
979
+ {
980
+ "epoch": 0.43,
981
+ "learning_rate": 0.0003924980816090731,
982
+ "loss": 0.6522,
983
+ "step": 153
984
+ },
985
+ {
986
+ "epoch": 0.44,
987
+ "learning_rate": 0.0003922141880797449,
988
+ "loss": 0.6142,
989
+ "step": 154
990
+ },
991
+ {
992
+ "epoch": 0.44,
993
+ "learning_rate": 0.0003919251287340265,
994
+ "loss": 0.5816,
995
+ "step": 155
996
+ },
997
+ {
998
+ "epoch": 0.44,
999
+ "learning_rate": 0.000391630911340478,
1000
+ "loss": 0.5686,
1001
+ "step": 156
1002
+ },
1003
+ {
1004
+ "epoch": 0.44,
1005
+ "learning_rate": 0.00039133154380628394,
1006
+ "loss": 0.6053,
1007
+ "step": 157
1008
+ },
1009
+ {
1010
+ "epoch": 0.45,
1011
+ "learning_rate": 0.0003910270341770404,
1012
+ "loss": 0.7025,
1013
+ "step": 158
1014
+ },
1015
+ {
1016
+ "epoch": 0.45,
1017
+ "learning_rate": 0.00039071739063653875,
1018
+ "loss": 0.5625,
1019
+ "step": 159
1020
+ },
1021
+ {
1022
+ "epoch": 0.45,
1023
+ "learning_rate": 0.00039040262150654597,
1024
+ "loss": 0.5781,
1025
+ "step": 160
1026
+ },
1027
+ {
1028
+ "epoch": 0.45,
1029
+ "eval_loss": 0.593679666519165,
1030
+ "eval_runtime": 29.5229,
1031
+ "eval_samples_per_second": 55.178,
1032
+ "eval_steps_per_second": 55.178,
1033
+ "step": 160
1034
+ },
1035
+ {
1036
+ "epoch": 0.46,
1037
+ "learning_rate": 0.00039008273524658094,
1038
+ "loss": 0.603,
1039
+ "step": 161
1040
+ },
1041
+ {
1042
+ "epoch": 0.46,
1043
+ "learning_rate": 0.0003897577404536867,
1044
+ "loss": 0.5789,
1045
+ "step": 162
1046
+ },
1047
+ {
1048
+ "epoch": 0.46,
1049
+ "learning_rate": 0.00038942764586220006,
1050
+ "loss": 0.6881,
1051
+ "step": 163
1052
+ },
1053
+ {
1054
+ "epoch": 0.46,
1055
+ "learning_rate": 0.00038909246034351624,
1056
+ "loss": 0.6034,
1057
+ "step": 164
1058
+ },
1059
+ {
1060
+ "epoch": 0.47,
1061
+ "learning_rate": 0.00038875219290585093,
1062
+ "loss": 0.5881,
1063
+ "step": 165
1064
+ },
1065
+ {
1066
+ "epoch": 0.47,
1067
+ "learning_rate": 0.0003884068526939978,
1068
+ "loss": 0.6318,
1069
+ "step": 166
1070
+ },
1071
+ {
1072
+ "epoch": 0.47,
1073
+ "learning_rate": 0.00038805644898908307,
1074
+ "loss": 0.5383,
1075
+ "step": 167
1076
+ },
1077
+ {
1078
+ "epoch": 0.48,
1079
+ "learning_rate": 0.0003877009912083159,
1080
+ "loss": 0.5284,
1081
+ "step": 168
1082
+ },
1083
+ {
1084
+ "epoch": 0.48,
1085
+ "learning_rate": 0.00038734048890473507,
1086
+ "loss": 0.5723,
1087
+ "step": 169
1088
+ },
1089
+ {
1090
+ "epoch": 0.48,
1091
+ "learning_rate": 0.00038697495176695274,
1092
+ "loss": 0.6311,
1093
+ "step": 170
1094
+ },
1095
+ {
1096
+ "epoch": 0.48,
1097
+ "learning_rate": 0.00038660438961889387,
1098
+ "loss": 0.6043,
1099
+ "step": 171
1100
+ },
1101
+ {
1102
+ "epoch": 0.49,
1103
+ "learning_rate": 0.00038622881241953195,
1104
+ "loss": 0.5023,
1105
+ "step": 172
1106
+ },
1107
+ {
1108
+ "epoch": 0.49,
1109
+ "learning_rate": 0.0003858482302626216,
1110
+ "loss": 0.566,
1111
+ "step": 173
1112
+ },
1113
+ {
1114
+ "epoch": 0.49,
1115
+ "learning_rate": 0.0003854626533764273,
1116
+ "loss": 0.5677,
1117
+ "step": 174
1118
+ },
1119
+ {
1120
+ "epoch": 0.5,
1121
+ "learning_rate": 0.00038507209212344833,
1122
+ "loss": 0.6342,
1123
+ "step": 175
1124
+ },
1125
+ {
1126
+ "epoch": 0.5,
1127
+ "learning_rate": 0.00038467655700014054,
1128
+ "loss": 0.6095,
1129
+ "step": 176
1130
+ },
1131
+ {
1132
+ "epoch": 0.5,
1133
+ "learning_rate": 0.0003842760586366339,
1134
+ "loss": 0.6715,
1135
+ "step": 177
1136
+ },
1137
+ {
1138
+ "epoch": 0.5,
1139
+ "learning_rate": 0.00038387060779644725,
1140
+ "loss": 0.5173,
1141
+ "step": 178
1142
+ },
1143
+ {
1144
+ "epoch": 0.51,
1145
+ "learning_rate": 0.00038346021537619866,
1146
+ "loss": 0.6155,
1147
+ "step": 179
1148
+ },
1149
+ {
1150
+ "epoch": 0.51,
1151
+ "learning_rate": 0.0003830448924053126,
1152
+ "loss": 0.6346,
1153
+ "step": 180
1154
+ },
1155
+ {
1156
+ "epoch": 0.51,
1157
+ "eval_loss": 0.6006138324737549,
1158
+ "eval_runtime": 29.5105,
1159
+ "eval_samples_per_second": 55.201,
1160
+ "eval_steps_per_second": 55.201,
1161
+ "step": 180
1162
+ },
1163
+ {
1164
+ "epoch": 0.51,
1165
+ "learning_rate": 0.00038262465004572377,
1166
+ "loss": 0.7549,
1167
+ "step": 181
1168
+ },
1169
+ {
1170
+ "epoch": 0.52,
1171
+ "learning_rate": 0.000382199499591577,
1172
+ "loss": 0.5214,
1173
+ "step": 182
1174
+ },
1175
+ {
1176
+ "epoch": 0.52,
1177
+ "learning_rate": 0.00038176945246892367,
1178
+ "loss": 0.5625,
1179
+ "step": 183
1180
+ },
1181
+ {
1182
+ "epoch": 0.52,
1183
+ "learning_rate": 0.0003813345202354145,
1184
+ "loss": 0.5267,
1185
+ "step": 184
1186
+ },
1187
+ {
1188
+ "epoch": 0.52,
1189
+ "learning_rate": 0.0003808947145799894,
1190
+ "loss": 0.6413,
1191
+ "step": 185
1192
+ },
1193
+ {
1194
+ "epoch": 0.53,
1195
+ "learning_rate": 0.0003804500473225627,
1196
+ "loss": 0.4987,
1197
+ "step": 186
1198
+ },
1199
+ {
1200
+ "epoch": 0.53,
1201
+ "learning_rate": 0.00038000053041370603,
1202
+ "loss": 0.6235,
1203
+ "step": 187
1204
+ },
1205
+ {
1206
+ "epoch": 0.53,
1207
+ "learning_rate": 0.0003795461759343268,
1208
+ "loss": 0.5331,
1209
+ "step": 188
1210
+ },
1211
+ {
1212
+ "epoch": 0.54,
1213
+ "learning_rate": 0.0003790869960953437,
1214
+ "loss": 0.6096,
1215
+ "step": 189
1216
+ },
1217
+ {
1218
+ "epoch": 0.54,
1219
+ "learning_rate": 0.0003786230032373583,
1220
+ "loss": 0.5872,
1221
+ "step": 190
1222
+ },
1223
+ {
1224
+ "epoch": 0.54,
1225
+ "learning_rate": 0.00037815420983032397,
1226
+ "loss": 0.6665,
1227
+ "step": 191
1228
+ },
1229
+ {
1230
+ "epoch": 0.54,
1231
+ "learning_rate": 0.0003776806284732098,
1232
+ "loss": 0.7373,
1233
+ "step": 192
1234
+ },
1235
+ {
1236
+ "epoch": 0.55,
1237
+ "learning_rate": 0.00037720227189366295,
1238
+ "loss": 0.5193,
1239
+ "step": 193
1240
+ },
1241
+ {
1242
+ "epoch": 0.55,
1243
+ "learning_rate": 0.00037671915294766606,
1244
+ "loss": 0.5335,
1245
+ "step": 194
1246
+ },
1247
+ {
1248
+ "epoch": 0.55,
1249
+ "learning_rate": 0.00037623128461919175,
1250
+ "loss": 0.5148,
1251
+ "step": 195
1252
+ },
1253
+ {
1254
+ "epoch": 0.55,
1255
+ "learning_rate": 0.00037573868001985377,
1256
+ "loss": 0.5961,
1257
+ "step": 196
1258
+ },
1259
+ {
1260
+ "epoch": 0.56,
1261
+ "learning_rate": 0.0003752413523885549,
1262
+ "loss": 0.5421,
1263
+ "step": 197
1264
+ },
1265
+ {
1266
+ "epoch": 0.56,
1267
+ "learning_rate": 0.00037473931509113056,
1268
+ "loss": 0.6177,
1269
+ "step": 198
1270
+ },
1271
+ {
1272
+ "epoch": 0.56,
1273
+ "learning_rate": 0.0003742325816199901,
1274
+ "loss": 0.6656,
1275
+ "step": 199
1276
+ },
1277
+ {
1278
+ "epoch": 0.57,
1279
+ "learning_rate": 0.00037372116559375397,
1280
+ "loss": 0.7663,
1281
+ "step": 200
1282
+ },
1283
+ {
1284
+ "epoch": 0.57,
1285
+ "eval_loss": 0.5926464200019836,
1286
+ "eval_runtime": 29.5066,
1287
+ "eval_samples_per_second": 55.208,
1288
+ "eval_steps_per_second": 55.208,
1289
+ "step": 200
1290
+ },
1291
+ {
1292
+ "epoch": 0.57,
1293
+ "learning_rate": 0.00037320508075688776,
1294
+ "loss": 0.6667,
1295
+ "step": 201
1296
+ },
1297
+ {
1298
+ "epoch": 0.57,
1299
+ "learning_rate": 0.00037268434097933274,
1300
+ "loss": 0.587,
1301
+ "step": 202
1302
+ },
1303
+ {
1304
+ "epoch": 0.57,
1305
+ "learning_rate": 0.0003721589602561332,
1306
+ "loss": 0.5747,
1307
+ "step": 203
1308
+ },
1309
+ {
1310
+ "epoch": 0.58,
1311
+ "learning_rate": 0.0003716289527070604,
1312
+ "loss": 0.557,
1313
+ "step": 204
1314
+ },
1315
+ {
1316
+ "epoch": 0.58,
1317
+ "learning_rate": 0.0003710943325762328,
1318
+ "loss": 0.5724,
1319
+ "step": 205
1320
+ },
1321
+ {
1322
+ "epoch": 0.58,
1323
+ "learning_rate": 0.00037055511423173356,
1324
+ "loss": 0.6036,
1325
+ "step": 206
1326
+ },
1327
+ {
1328
+ "epoch": 0.59,
1329
+ "learning_rate": 0.0003700113121652243,
1330
+ "loss": 0.6007,
1331
+ "step": 207
1332
+ },
1333
+ {
1334
+ "epoch": 0.59,
1335
+ "learning_rate": 0.0003694629409915555,
1336
+ "loss": 0.6895,
1337
+ "step": 208
1338
+ },
1339
+ {
1340
+ "epoch": 0.59,
1341
+ "learning_rate": 0.00036891001544837393,
1342
+ "loss": 0.6642,
1343
+ "step": 209
1344
+ },
1345
+ {
1346
+ "epoch": 0.59,
1347
+ "learning_rate": 0.0003683525503957263,
1348
+ "loss": 0.7124,
1349
+ "step": 210
1350
+ },
1351
+ {
1352
+ "epoch": 0.6,
1353
+ "learning_rate": 0.00036779056081566024,
1354
+ "loss": 0.52,
1355
+ "step": 211
1356
+ },
1357
+ {
1358
+ "epoch": 0.6,
1359
+ "learning_rate": 0.00036722406181182143,
1360
+ "loss": 0.6133,
1361
+ "step": 212
1362
+ },
1363
+ {
1364
+ "epoch": 0.6,
1365
+ "learning_rate": 0.0003666530686090475,
1366
+ "loss": 0.5487,
1367
+ "step": 213
1368
+ },
1369
+ {
1370
+ "epoch": 0.61,
1371
+ "learning_rate": 0.0003660775965529595,
1372
+ "loss": 0.5686,
1373
+ "step": 214
1374
+ },
1375
+ {
1376
+ "epoch": 0.61,
1377
+ "learning_rate": 0.0003654976611095487,
1378
+ "loss": 0.4951,
1379
+ "step": 215
1380
+ },
1381
+ {
1382
+ "epoch": 0.61,
1383
+ "learning_rate": 0.0003649132778647615,
1384
+ "loss": 0.5794,
1385
+ "step": 216
1386
+ },
1387
+ {
1388
+ "epoch": 0.61,
1389
+ "learning_rate": 0.00036432446252408014,
1390
+ "loss": 0.4965,
1391
+ "step": 217
1392
+ },
1393
+ {
1394
+ "epoch": 0.62,
1395
+ "learning_rate": 0.0003637312309121011,
1396
+ "loss": 0.6146,
1397
+ "step": 218
1398
+ },
1399
+ {
1400
+ "epoch": 0.62,
1401
+ "learning_rate": 0.00036313359897210935,
1402
+ "loss": 0.5697,
1403
+ "step": 219
1404
+ },
1405
+ {
1406
+ "epoch": 0.62,
1407
+ "learning_rate": 0.00036253158276565006,
1408
+ "loss": 0.5864,
1409
+ "step": 220
1410
+ },
1411
+ {
1412
+ "epoch": 0.62,
1413
+ "eval_loss": 0.5865967273712158,
1414
+ "eval_runtime": 29.5042,
1415
+ "eval_samples_per_second": 55.212,
1416
+ "eval_steps_per_second": 55.212,
1417
+ "step": 220
1418
+ },
1419
+ {
1420
+ "epoch": 0.63,
1421
+ "learning_rate": 0.000361925198472097,
1422
+ "loss": 0.4863,
1423
+ "step": 221
1424
+ },
1425
+ {
1426
+ "epoch": 0.63,
1427
+ "learning_rate": 0.00036131446238821767,
1428
+ "loss": 0.5185,
1429
+ "step": 222
1430
+ },
1431
+ {
1432
+ "epoch": 0.63,
1433
+ "learning_rate": 0.00036069939092773514,
1434
+ "loss": 0.5846,
1435
+ "step": 223
1436
+ },
1437
+ {
1438
+ "epoch": 0.63,
1439
+ "learning_rate": 0.0003600800006208872,
1440
+ "loss": 0.5416,
1441
+ "step": 224
1442
+ },
1443
+ {
1444
+ "epoch": 0.64,
1445
+ "learning_rate": 0.00035945630811398205,
1446
+ "loss": 0.5783,
1447
+ "step": 225
1448
+ },
1449
+ {
1450
+ "epoch": 0.64,
1451
+ "learning_rate": 0.0003588283301689507,
1452
+ "loss": 0.7388,
1453
+ "step": 226
1454
+ },
1455
+ {
1456
+ "epoch": 0.64,
1457
+ "learning_rate": 0.0003581960836628968,
1458
+ "loss": 0.7164,
1459
+ "step": 227
1460
+ },
1461
+ {
1462
+ "epoch": 0.65,
1463
+ "learning_rate": 0.0003575595855876427,
1464
+ "loss": 0.5729,
1465
+ "step": 228
1466
+ },
1467
+ {
1468
+ "epoch": 0.65,
1469
+ "learning_rate": 0.0003569188530492732,
1470
+ "loss": 0.5475,
1471
+ "step": 229
1472
+ },
1473
+ {
1474
+ "epoch": 0.65,
1475
+ "learning_rate": 0.0003562739032676756,
1476
+ "loss": 0.6107,
1477
+ "step": 230
1478
+ },
1479
+ {
1480
+ "epoch": 0.65,
1481
+ "learning_rate": 0.00035562475357607694,
1482
+ "loss": 0.5441,
1483
+ "step": 231
1484
+ },
1485
+ {
1486
+ "epoch": 0.66,
1487
+ "learning_rate": 0.000354971421420578,
1488
+ "loss": 0.6148,
1489
+ "step": 232
1490
+ },
1491
+ {
1492
+ "epoch": 0.66,
1493
+ "learning_rate": 0.0003543139243596847,
1494
+ "loss": 0.5864,
1495
+ "step": 233
1496
+ },
1497
+ {
1498
+ "epoch": 0.66,
1499
+ "learning_rate": 0.00035365228006383614,
1500
+ "loss": 0.5044,
1501
+ "step": 234
1502
+ },
1503
+ {
1504
+ "epoch": 0.67,
1505
+ "learning_rate": 0.00035298650631492956,
1506
+ "loss": 0.4947,
1507
+ "step": 235
1508
+ },
1509
+ {
1510
+ "epoch": 0.67,
1511
+ "learning_rate": 0.0003523166210058426,
1512
+ "loss": 0.5524,
1513
+ "step": 236
1514
+ },
1515
+ {
1516
+ "epoch": 0.67,
1517
+ "learning_rate": 0.0003516426421399523,
1518
+ "loss": 0.5434,
1519
+ "step": 237
1520
+ },
1521
+ {
1522
+ "epoch": 0.67,
1523
+ "learning_rate": 0.00035096458783065145,
1524
+ "loss": 0.6695,
1525
+ "step": 238
1526
+ },
1527
+ {
1528
+ "epoch": 0.68,
1529
+ "learning_rate": 0.0003502824763008615,
1530
+ "loss": 0.6813,
1531
+ "step": 239
1532
+ },
1533
+ {
1534
+ "epoch": 0.68,
1535
+ "learning_rate": 0.00034959632588254304,
1536
+ "loss": 0.5943,
1537
+ "step": 240
1538
+ },
1539
+ {
1540
+ "epoch": 0.68,
1541
+ "eval_loss": 0.5755711793899536,
1542
+ "eval_runtime": 29.5,
1543
+ "eval_samples_per_second": 55.22,
1544
+ "eval_steps_per_second": 55.22,
1545
+ "step": 240
1546
+ },
1547
+ {
1548
+ "epoch": 0.68,
1549
+ "learning_rate": 0.000348906155016203,
1550
+ "loss": 0.5239,
1551
+ "step": 241
1552
+ },
1553
+ {
1554
+ "epoch": 0.69,
1555
+ "learning_rate": 0.0003482119822503994,
1556
+ "loss": 0.5347,
1557
+ "step": 242
1558
+ },
1559
+ {
1560
+ "epoch": 0.69,
1561
+ "learning_rate": 0.000347513826241242,
1562
+ "loss": 0.5513,
1563
+ "step": 243
1564
+ },
1565
+ {
1566
+ "epoch": 0.69,
1567
+ "learning_rate": 0.0003468117057518921,
1568
+ "loss": 0.6988,
1569
+ "step": 244
1570
+ },
1571
+ {
1572
+ "epoch": 0.69,
1573
+ "learning_rate": 0.000346105639652057,
1574
+ "loss": 0.5591,
1575
+ "step": 245
1576
+ },
1577
+ {
1578
+ "epoch": 0.7,
1579
+ "learning_rate": 0.00034539564691748407,
1580
+ "loss": 0.5305,
1581
+ "step": 246
1582
+ },
1583
+ {
1584
+ "epoch": 0.7,
1585
+ "learning_rate": 0.00034468174662944995,
1586
+ "loss": 0.5492,
1587
+ "step": 247
1588
+ },
1589
+ {
1590
+ "epoch": 0.7,
1591
+ "learning_rate": 0.0003439639579742481,
1592
+ "loss": 0.5907,
1593
+ "step": 248
1594
+ },
1595
+ {
1596
+ "epoch": 0.71,
1597
+ "learning_rate": 0.00034324230024267285,
1598
+ "loss": 0.5596,
1599
+ "step": 249
1600
+ },
1601
+ {
1602
+ "epoch": 0.71,
1603
+ "learning_rate": 0.00034251679282950144,
1604
+ "loss": 0.6163,
1605
+ "step": 250
1606
+ },
1607
+ {
1608
+ "epoch": 0.71,
1609
+ "learning_rate": 0.00034178745523297233,
1610
+ "loss": 0.7016,
1611
+ "step": 251
1612
+ },
1613
+ {
1614
+ "epoch": 0.71,
1615
+ "learning_rate": 0.0003410543070542615,
1616
+ "loss": 0.734,
1617
+ "step": 252
1618
+ },
1619
+ {
1620
+ "epoch": 0.72,
1621
+ "learning_rate": 0.00034031736799695537,
1622
+ "loss": 0.6601,
1623
+ "step": 253
1624
+ },
1625
+ {
1626
+ "epoch": 0.72,
1627
+ "learning_rate": 0.0003395766578665215,
1628
+ "loss": 0.5738,
1629
+ "step": 254
1630
+ },
1631
+ {
1632
+ "epoch": 0.72,
1633
+ "learning_rate": 0.00033883219656977615,
1634
+ "loss": 0.5691,
1635
+ "step": 255
1636
+ },
1637
+ {
1638
+ "epoch": 0.72,
1639
+ "learning_rate": 0.0003380840041143494,
1640
+ "loss": 0.4958,
1641
+ "step": 256
1642
+ },
1643
+ {
1644
+ "epoch": 0.73,
1645
+ "learning_rate": 0.0003373321006081474,
1646
+ "loss": 0.4613,
1647
+ "step": 257
1648
+ },
1649
+ {
1650
+ "epoch": 0.73,
1651
+ "learning_rate": 0.00033657650625881183,
1652
+ "loss": 0.5939,
1653
+ "step": 258
1654
+ },
1655
+ {
1656
+ "epoch": 0.73,
1657
+ "learning_rate": 0.0003358172413731772,
1658
+ "loss": 0.6093,
1659
+ "step": 259
1660
+ },
1661
+ {
1662
+ "epoch": 0.74,
1663
+ "learning_rate": 0.00033505432635672457,
1664
+ "loss": 0.5029,
1665
+ "step": 260
1666
+ },
1667
+ {
1668
+ "epoch": 0.74,
1669
+ "eval_loss": 0.5733422040939331,
1670
+ "eval_runtime": 29.5698,
1671
+ "eval_samples_per_second": 55.09,
1672
+ "eval_steps_per_second": 55.09,
1673
+ "step": 260
1674
+ },
1675
+ {
1676
+ "epoch": 0.74,
1677
+ "learning_rate": 0.0003342877817130334,
1678
+ "loss": 0.6983,
1679
+ "step": 261
1680
+ },
1681
+ {
1682
+ "epoch": 0.74,
1683
+ "learning_rate": 0.00033351762804323073,
1684
+ "loss": 0.5567,
1685
+ "step": 262
1686
+ },
1687
+ {
1688
+ "epoch": 0.74,
1689
+ "learning_rate": 0.0003327438860454372,
1690
+ "loss": 0.5081,
1691
+ "step": 263
1692
+ },
1693
+ {
1694
+ "epoch": 0.75,
1695
+ "learning_rate": 0.00033196657651421066,
1696
+ "loss": 0.5475,
1697
+ "step": 264
1698
+ },
1699
+ {
1700
+ "epoch": 0.75,
1701
+ "learning_rate": 0.000331185720339988,
1702
+ "loss": 0.5527,
1703
+ "step": 265
1704
+ },
1705
+ {
1706
+ "epoch": 0.75,
1707
+ "learning_rate": 0.0003304013385085229,
1708
+ "loss": 0.5244,
1709
+ "step": 266
1710
+ },
1711
+ {
1712
+ "epoch": 0.76,
1713
+ "learning_rate": 0.0003296134521003222,
1714
+ "loss": 0.6156,
1715
+ "step": 267
1716
+ },
1717
+ {
1718
+ "epoch": 0.76,
1719
+ "learning_rate": 0.0003288220822900796,
1720
+ "loss": 0.5203,
1721
+ "step": 268
1722
+ },
1723
+ {
1724
+ "epoch": 0.76,
1725
+ "learning_rate": 0.00032802725034610593,
1726
+ "loss": 0.5844,
1727
+ "step": 269
1728
+ },
1729
+ {
1730
+ "epoch": 0.76,
1731
+ "learning_rate": 0.0003272289776297583,
1732
+ "loss": 0.6262,
1733
+ "step": 270
1734
+ },
1735
+ {
1736
+ "epoch": 0.77,
1737
+ "learning_rate": 0.0003264272855948653,
1738
+ "loss": 0.552,
1739
+ "step": 271
1740
+ },
1741
+ {
1742
+ "epoch": 0.77,
1743
+ "learning_rate": 0.0003256221957871512,
1744
+ "loss": 0.5817,
1745
+ "step": 272
1746
+ },
1747
+ {
1748
+ "epoch": 0.77,
1749
+ "learning_rate": 0.0003248137298436561,
1750
+ "loss": 0.4906,
1751
+ "step": 273
1752
+ },
1753
+ {
1754
+ "epoch": 0.78,
1755
+ "learning_rate": 0.00032400190949215507,
1756
+ "loss": 0.4638,
1757
+ "step": 274
1758
+ },
1759
+ {
1760
+ "epoch": 0.78,
1761
+ "learning_rate": 0.0003231867565505737,
1762
+ "loss": 0.532,
1763
+ "step": 275
1764
+ },
1765
+ {
1766
+ "epoch": 0.78,
1767
+ "learning_rate": 0.0003223682929264022,
1768
+ "loss": 0.572,
1769
+ "step": 276
1770
+ },
1771
+ {
1772
+ "epoch": 0.78,
1773
+ "learning_rate": 0.0003215465406161064,
1774
+ "loss": 0.6238,
1775
+ "step": 277
1776
+ },
1777
+ {
1778
+ "epoch": 0.79,
1779
+ "learning_rate": 0.0003207215217045363,
1780
+ "loss": 0.5751,
1781
+ "step": 278
1782
+ },
1783
+ {
1784
+ "epoch": 0.79,
1785
+ "learning_rate": 0.0003198932583643332,
1786
+ "loss": 0.5688,
1787
+ "step": 279
1788
+ },
1789
+ {
1790
+ "epoch": 0.79,
1791
+ "learning_rate": 0.0003190617728553332,
1792
+ "loss": 0.5482,
1793
+ "step": 280
1794
+ },
1795
+ {
1796
+ "epoch": 0.79,
1797
+ "eval_loss": 0.5711647272109985,
1798
+ "eval_runtime": 29.618,
1799
+ "eval_samples_per_second": 55.0,
1800
+ "eval_steps_per_second": 55.0,
1801
+ "step": 280
1802
+ },
1803
+ {
1804
+ "epoch": 0.8,
1805
+ "learning_rate": 0.0003182270875239694,
1806
+ "loss": 0.6118,
1807
+ "step": 281
1808
+ },
1809
+ {
1810
+ "epoch": 0.8,
1811
+ "learning_rate": 0.0003173892248026708,
1812
+ "loss": 0.5704,
1813
+ "step": 282
1814
+ },
1815
+ {
1816
+ "epoch": 0.8,
1817
+ "learning_rate": 0.0003165482072092602,
1818
+ "loss": 0.6117,
1819
+ "step": 283
1820
+ },
1821
+ {
1822
+ "epoch": 0.8,
1823
+ "learning_rate": 0.00031570405734634814,
1824
+ "loss": 0.5798,
1825
+ "step": 284
1826
+ },
1827
+ {
1828
+ "epoch": 0.81,
1829
+ "learning_rate": 0.0003148567979007261,
1830
+ "loss": 0.5585,
1831
+ "step": 285
1832
+ },
1833
+ {
1834
+ "epoch": 0.81,
1835
+ "learning_rate": 0.00031400645164275653,
1836
+ "loss": 0.6552,
1837
+ "step": 286
1838
+ },
1839
+ {
1840
+ "epoch": 0.81,
1841
+ "learning_rate": 0.000313153041425761,
1842
+ "loss": 0.5421,
1843
+ "step": 287
1844
+ },
1845
+ {
1846
+ "epoch": 0.82,
1847
+ "learning_rate": 0.0003122965901854058,
1848
+ "loss": 0.497,
1849
+ "step": 288
1850
+ },
1851
+ {
1852
+ "epoch": 0.82,
1853
+ "learning_rate": 0.0003114371209390857,
1854
+ "loss": 0.5207,
1855
+ "step": 289
1856
+ },
1857
+ {
1858
+ "epoch": 0.82,
1859
+ "learning_rate": 0.00031057465678530543,
1860
+ "loss": 0.5028,
1861
+ "step": 290
1862
+ },
1863
+ {
1864
+ "epoch": 0.82,
1865
+ "learning_rate": 0.0003097092209030588,
1866
+ "loss": 0.4905,
1867
+ "step": 291
1868
+ },
1869
+ {
1870
+ "epoch": 0.83,
1871
+ "learning_rate": 0.0003088408365512055,
1872
+ "loss": 0.6156,
1873
+ "step": 292
1874
+ },
1875
+ {
1876
+ "epoch": 0.83,
1877
+ "learning_rate": 0.00030796952706784646,
1878
+ "loss": 0.5414,
1879
+ "step": 293
1880
+ },
1881
+ {
1882
+ "epoch": 0.83,
1883
+ "learning_rate": 0.0003070953158696967,
1884
+ "loss": 0.4219,
1885
+ "step": 294
1886
+ },
1887
+ {
1888
+ "epoch": 0.84,
1889
+ "learning_rate": 0.00030621822645145506,
1890
+ "loss": 0.6778,
1891
+ "step": 295
1892
+ },
1893
+ {
1894
+ "epoch": 0.84,
1895
+ "learning_rate": 0.000305338282385174,
1896
+ "loss": 0.5173,
1897
+ "step": 296
1898
+ },
1899
+ {
1900
+ "epoch": 0.84,
1901
+ "learning_rate": 0.00030445550731962546,
1902
+ "loss": 0.5959,
1903
+ "step": 297
1904
+ },
1905
+ {
1906
+ "epoch": 0.84,
1907
+ "learning_rate": 0.0003035699249796651,
1908
+ "loss": 0.6535,
1909
+ "step": 298
1910
+ },
1911
+ {
1912
+ "epoch": 0.85,
1913
+ "learning_rate": 0.0003026815591655953,
1914
+ "loss": 0.6306,
1915
+ "step": 299
1916
+ },
1917
+ {
1918
+ "epoch": 0.85,
1919
+ "learning_rate": 0.00030179043375252486,
1920
+ "loss": 0.5413,
1921
+ "step": 300
1922
+ },
1923
+ {
1924
+ "epoch": 0.85,
1925
+ "eval_loss": 0.5820406675338745,
1926
+ "eval_runtime": 29.5338,
1927
+ "eval_samples_per_second": 55.157,
1928
+ "eval_steps_per_second": 55.157,
1929
+ "step": 300
1930
+ },
1931
+ {
1932
+ "epoch": 0.85,
1933
+ "learning_rate": 0.000300896572689728,
1934
+ "loss": 0.5046,
1935
+ "step": 301
1936
+ },
1937
+ {
1938
+ "epoch": 0.86,
1939
+ "learning_rate": 0.00030000000000000003,
1940
+ "loss": 0.6131,
1941
+ "step": 302
1942
+ },
1943
+ {
1944
+ "epoch": 0.86,
1945
+ "learning_rate": 0.00029910073977901236,
1946
+ "loss": 0.4598,
1947
+ "step": 303
1948
+ },
1949
+ {
1950
+ "epoch": 0.86,
1951
+ "learning_rate": 0.00029819881619466443,
1952
+ "loss": 0.5017,
1953
+ "step": 304
1954
+ },
1955
+ {
1956
+ "epoch": 0.86,
1957
+ "learning_rate": 0.00029729425348643467,
1958
+ "loss": 0.6571,
1959
+ "step": 305
1960
+ },
1961
+ {
1962
+ "epoch": 0.87,
1963
+ "learning_rate": 0.00029638707596472855,
1964
+ "loss": 0.577,
1965
+ "step": 306
1966
+ },
1967
+ {
1968
+ "epoch": 0.87,
1969
+ "learning_rate": 0.00029547730801022544,
1970
+ "loss": 0.5014,
1971
+ "step": 307
1972
+ },
1973
+ {
1974
+ "epoch": 0.87,
1975
+ "learning_rate": 0.00029456497407322365,
1976
+ "loss": 0.4571,
1977
+ "step": 308
1978
+ },
1979
+ {
1980
+ "epoch": 0.87,
1981
+ "learning_rate": 0.0002936500986729829,
1982
+ "loss": 0.5818,
1983
+ "step": 309
1984
+ },
1985
+ {
1986
+ "epoch": 0.88,
1987
+ "learning_rate": 0.0002927327063970655,
1988
+ "loss": 0.5138,
1989
+ "step": 310
1990
+ },
1991
+ {
1992
+ "epoch": 0.88,
1993
+ "learning_rate": 0.00029181282190067574,
1994
+ "loss": 0.5927,
1995
+ "step": 311
1996
+ },
1997
+ {
1998
+ "epoch": 0.88,
1999
+ "learning_rate": 0.00029089046990599685,
2000
+ "loss": 0.5297,
2001
+ "step": 312
2002
+ },
2003
+ {
2004
+ "epoch": 0.89,
2005
+ "learning_rate": 0.0002899656752015272,
2006
+ "loss": 0.5693,
2007
+ "step": 313
2008
+ },
2009
+ {
2010
+ "epoch": 0.89,
2011
+ "learning_rate": 0.0002890384626414134,
2012
+ "loss": 0.5579,
2013
+ "step": 314
2014
+ },
2015
+ {
2016
+ "epoch": 0.89,
2017
+ "learning_rate": 0.000288108857144783,
2018
+ "loss": 0.6165,
2019
+ "step": 315
2020
+ },
2021
+ {
2022
+ "epoch": 0.89,
2023
+ "learning_rate": 0.00028717688369507425,
2024
+ "loss": 0.4311,
2025
+ "step": 316
2026
+ },
2027
+ {
2028
+ "epoch": 0.9,
2029
+ "learning_rate": 0.00028624256733936486,
2030
+ "loss": 0.5919,
2031
+ "step": 317
2032
+ },
2033
+ {
2034
+ "epoch": 0.9,
2035
+ "learning_rate": 0.0002853059331876991,
2036
+ "loss": 0.6499,
2037
+ "step": 318
2038
+ },
2039
+ {
2040
+ "epoch": 0.9,
2041
+ "learning_rate": 0.0002843670064124125,
2042
+ "loss": 0.5486,
2043
+ "step": 319
2044
+ },
2045
+ {
2046
+ "epoch": 0.91,
2047
+ "learning_rate": 0.0002834258122474556,
2048
+ "loss": 0.657,
2049
+ "step": 320
2050
+ },
2051
+ {
2052
+ "epoch": 0.91,
2053
+ "eval_loss": 0.5696084499359131,
2054
+ "eval_runtime": 29.5183,
2055
+ "eval_samples_per_second": 55.186,
2056
+ "eval_steps_per_second": 55.186,
2057
+ "step": 320
2058
+ },
2059
+ {
2060
+ "epoch": 0.91,
2061
+ "learning_rate": 0.0002824823759877159,
2062
+ "loss": 0.6218,
2063
+ "step": 321
2064
+ },
2065
+ {
2066
+ "epoch": 0.91,
2067
+ "learning_rate": 0.00028153672298833775,
2068
+ "loss": 0.4651,
2069
+ "step": 322
2070
+ },
2071
+ {
2072
+ "epoch": 0.91,
2073
+ "learning_rate": 0.0002805888786640412,
2074
+ "loss": 0.5388,
2075
+ "step": 323
2076
+ },
2077
+ {
2078
+ "epoch": 0.92,
2079
+ "learning_rate": 0.00027963886848843863,
2080
+ "loss": 0.4579,
2081
+ "step": 324
2082
+ },
2083
+ {
2084
+ "epoch": 0.92,
2085
+ "learning_rate": 0.00027868671799335053,
2086
+ "loss": 0.6092,
2087
+ "step": 325
2088
+ },
2089
+ {
2090
+ "epoch": 0.92,
2091
+ "learning_rate": 0.00027773245276811905,
2092
+ "loss": 0.711,
2093
+ "step": 326
2094
+ },
2095
+ {
2096
+ "epoch": 0.93,
2097
+ "learning_rate": 0.00027677609845892055,
2098
+ "loss": 0.6601,
2099
+ "step": 327
2100
+ },
2101
+ {
2102
+ "epoch": 0.93,
2103
+ "learning_rate": 0.0002758176807680759,
2104
+ "loss": 0.4271,
2105
+ "step": 328
2106
+ },
2107
+ {
2108
+ "epoch": 0.93,
2109
+ "learning_rate": 0.00027485722545336023,
2110
+ "loss": 0.5561,
2111
+ "step": 329
2112
+ },
2113
+ {
2114
+ "epoch": 0.93,
2115
+ "learning_rate": 0.00027389475832731035,
2116
+ "loss": 0.4772,
2117
+ "step": 330
2118
+ },
2119
+ {
2120
+ "epoch": 0.94,
2121
+ "learning_rate": 0.00027293030525653105,
2122
+ "loss": 0.56,
2123
+ "step": 331
2124
+ },
2125
+ {
2126
+ "epoch": 0.94,
2127
+ "learning_rate": 0.0002719638921610002,
2128
+ "loss": 0.5905,
2129
+ "step": 332
2130
+ },
2131
+ {
2132
+ "epoch": 0.94,
2133
+ "learning_rate": 0.0002709955450133718,
2134
+ "loss": 0.4981,
2135
+ "step": 333
2136
+ },
2137
+ {
2138
+ "epoch": 0.95,
2139
+ "learning_rate": 0.0002700252898382781,
2140
+ "loss": 0.5701,
2141
+ "step": 334
2142
+ },
2143
+ {
2144
+ "epoch": 0.95,
2145
+ "learning_rate": 0.0002690531527116304,
2146
+ "loss": 0.4725,
2147
+ "step": 335
2148
+ },
2149
+ {
2150
+ "epoch": 0.95,
2151
+ "learning_rate": 0.00026807915975991765,
2152
+ "loss": 0.5022,
2153
+ "step": 336
2154
+ },
2155
+ {
2156
+ "epoch": 0.95,
2157
+ "learning_rate": 0.000267103337159505,
2158
+ "loss": 0.4953,
2159
+ "step": 337
2160
+ },
2161
+ {
2162
+ "epoch": 0.96,
2163
+ "learning_rate": 0.0002661257111359299,
2164
+ "loss": 0.5762,
2165
+ "step": 338
2166
+ },
2167
+ {
2168
+ "epoch": 0.96,
2169
+ "learning_rate": 0.0002651463079631973,
2170
+ "loss": 0.6713,
2171
+ "step": 339
2172
+ },
2173
+ {
2174
+ "epoch": 0.96,
2175
+ "learning_rate": 0.00026416515396307353,
2176
+ "loss": 0.506,
2177
+ "step": 340
2178
+ },
2179
+ {
2180
+ "epoch": 0.96,
2181
+ "eval_loss": 0.5838707685470581,
2182
+ "eval_runtime": 29.495,
2183
+ "eval_samples_per_second": 55.23,
2184
+ "eval_steps_per_second": 55.23,
2185
+ "step": 340
2186
+ },
2187
+ {
2188
+ "epoch": 0.97,
2189
+ "learning_rate": 0.0002631822755043793,
2190
+ "loss": 0.5368,
2191
+ "step": 341
2192
+ },
2193
+ {
2194
+ "epoch": 0.97,
2195
+ "learning_rate": 0.00026219769900228014,
2196
+ "loss": 0.5509,
2197
+ "step": 342
2198
+ },
2199
+ {
2200
+ "epoch": 0.97,
2201
+ "learning_rate": 0.0002612114509175775,
2202
+ "loss": 0.5365,
2203
+ "step": 343
2204
+ },
2205
+ {
2206
+ "epoch": 0.97,
2207
+ "learning_rate": 0.0002602235577559969,
2208
+ "loss": 0.6527,
2209
+ "step": 344
2210
+ },
2211
+ {
2212
+ "epoch": 0.98,
2213
+ "learning_rate": 0.0002592340460674759,
2214
+ "loss": 0.4975,
2215
+ "step": 345
2216
+ },
2217
+ {
2218
+ "epoch": 0.98,
2219
+ "learning_rate": 0.00025824294244545045,
2220
+ "loss": 0.6552,
2221
+ "step": 346
2222
+ },
2223
+ {
2224
+ "epoch": 0.98,
2225
+ "learning_rate": 0.00025725027352614015,
2226
+ "loss": 0.5523,
2227
+ "step": 347
2228
+ },
2229
+ {
2230
+ "epoch": 0.99,
2231
+ "learning_rate": 0.00025625606598783256,
2232
+ "loss": 0.6078,
2233
+ "step": 348
2234
+ },
2235
+ {
2236
+ "epoch": 0.99,
2237
+ "learning_rate": 0.0002552603465501661,
2238
+ "loss": 0.4592,
2239
+ "step": 349
2240
+ },
2241
+ {
2242
+ "epoch": 0.99,
2243
+ "learning_rate": 0.0002542631419734118,
2244
+ "loss": 0.587,
2245
+ "step": 350
2246
+ },
2247
+ {
2248
+ "epoch": 0.99,
2249
+ "learning_rate": 0.00025326447905775446,
2250
+ "loss": 0.5689,
2251
+ "step": 351
2252
+ },
2253
+ {
2254
+ "epoch": 1.0,
2255
+ "learning_rate": 0.00025226438464257217,
2256
+ "loss": 0.4961,
2257
+ "step": 352
2258
+ },
2259
+ {
2260
+ "epoch": 1.0,
2261
+ "learning_rate": 0.00025126288560571483,
2262
+ "loss": 0.4735,
2263
+ "step": 353
2264
+ },
2265
+ {
2266
+ "epoch": 1.0,
2267
+ "learning_rate": 0.00025026000886278223,
2268
+ "loss": 0.5387,
2269
+ "step": 354
2270
+ },
2271
+ {
2272
+ "epoch": 1.01,
2273
+ "learning_rate": 0.00024925578136640033,
2274
+ "loss": 0.5427,
2275
+ "step": 355
2276
+ },
2277
+ {
2278
+ "epoch": 1.01,
2279
+ "learning_rate": 0.0002482502301054969,
2280
+ "loss": 0.5362,
2281
+ "step": 356
2282
+ },
2283
+ {
2284
+ "epoch": 1.01,
2285
+ "learning_rate": 0.0002472433821045765,
2286
+ "loss": 0.5619,
2287
+ "step": 357
2288
+ },
2289
+ {
2290
+ "epoch": 1.01,
2291
+ "learning_rate": 0.000246235264422994,
2292
+ "loss": 0.4473,
2293
+ "step": 358
2294
+ },
2295
+ {
2296
+ "epoch": 1.02,
2297
+ "learning_rate": 0.0002452259041542269,
2298
+ "loss": 0.4934,
2299
+ "step": 359
2300
+ },
2301
+ {
2302
+ "epoch": 1.02,
2303
+ "learning_rate": 0.0002442153284251484,
2304
+ "loss": 0.4804,
2305
+ "step": 360
2306
+ },
2307
+ {
2308
+ "epoch": 1.02,
2309
+ "eval_loss": 0.5803248882293701,
2310
+ "eval_runtime": 29.5222,
2311
+ "eval_samples_per_second": 55.179,
2312
+ "eval_steps_per_second": 55.179,
2313
+ "step": 360
2314
+ },
2315
+ {
2316
+ "epoch": 1.02,
2317
+ "learning_rate": 0.00024320356439529674,
2318
+ "loss": 0.5928,
2319
+ "step": 361
2320
+ },
2321
+ {
2322
+ "epoch": 1.02,
2323
+ "learning_rate": 0.00024219063925614664,
2324
+ "loss": 0.5542,
2325
+ "step": 362
2326
+ },
2327
+ {
2328
+ "epoch": 1.03,
2329
+ "learning_rate": 0.00024117658023037791,
2330
+ "loss": 0.4748,
2331
+ "step": 363
2332
+ },
2333
+ {
2334
+ "epoch": 1.03,
2335
+ "learning_rate": 0.0002401614145711437,
2336
+ "loss": 0.4946,
2337
+ "step": 364
2338
+ },
2339
+ {
2340
+ "epoch": 1.03,
2341
+ "learning_rate": 0.00023914516956133862,
2342
+ "loss": 0.4455,
2343
+ "step": 365
2344
+ },
2345
+ {
2346
+ "epoch": 1.04,
2347
+ "learning_rate": 0.0002381278725128649,
2348
+ "loss": 0.4165,
2349
+ "step": 366
2350
+ },
2351
+ {
2352
+ "epoch": 1.04,
2353
+ "learning_rate": 0.0002371095507658987,
2354
+ "loss": 0.4976,
2355
+ "step": 367
2356
+ },
2357
+ {
2358
+ "epoch": 1.04,
2359
+ "learning_rate": 0.00023609023168815526,
2360
+ "loss": 0.4858,
2361
+ "step": 368
2362
+ },
2363
+ {
2364
+ "epoch": 1.04,
2365
+ "learning_rate": 0.00023506994267415358,
2366
+ "loss": 0.5761,
2367
+ "step": 369
2368
+ },
2369
+ {
2370
+ "epoch": 1.05,
2371
+ "learning_rate": 0.00023404871114447975,
2372
+ "loss": 0.46,
2373
+ "step": 370
2374
+ },
2375
+ {
2376
+ "epoch": 1.05,
2377
+ "learning_rate": 0.00023302656454505033,
2378
+ "loss": 0.3988,
2379
+ "step": 371
2380
+ },
2381
+ {
2382
+ "epoch": 1.05,
2383
+ "learning_rate": 0.00023200353034637483,
2384
+ "loss": 0.6341,
2385
+ "step": 372
2386
+ },
2387
+ {
2388
+ "epoch": 1.06,
2389
+ "learning_rate": 0.00023097963604281697,
2390
+ "loss": 0.4849,
2391
+ "step": 373
2392
+ },
2393
+ {
2394
+ "epoch": 1.06,
2395
+ "learning_rate": 0.00022995490915185633,
2396
+ "loss": 0.4287,
2397
+ "step": 374
2398
+ },
2399
+ {
2400
+ "epoch": 1.06,
2401
+ "learning_rate": 0.00022892937721334842,
2402
+ "loss": 0.3591,
2403
+ "step": 375
2404
+ },
2405
+ {
2406
+ "epoch": 1.06,
2407
+ "learning_rate": 0.00022790306778878465,
2408
+ "loss": 0.454,
2409
+ "step": 376
2410
+ },
2411
+ {
2412
+ "epoch": 1.07,
2413
+ "learning_rate": 0.00022687600846055164,
2414
+ "loss": 0.4785,
2415
+ "step": 377
2416
+ },
2417
+ {
2418
+ "epoch": 1.07,
2419
+ "learning_rate": 0.0002258482268311898,
2420
+ "loss": 0.4696,
2421
+ "step": 378
2422
+ },
2423
+ {
2424
+ "epoch": 1.07,
2425
+ "learning_rate": 0.00022481975052265188,
2426
+ "loss": 0.4635,
2427
+ "step": 379
2428
+ },
2429
+ {
2430
+ "epoch": 1.08,
2431
+ "learning_rate": 0.0002237906071755601,
2432
+ "loss": 0.5095,
2433
+ "step": 380
2434
+ },
2435
+ {
2436
+ "epoch": 1.08,
2437
+ "eval_loss": 0.5974432229995728,
2438
+ "eval_runtime": 29.5049,
2439
+ "eval_samples_per_second": 55.211,
2440
+ "eval_steps_per_second": 55.211,
2441
+ "step": 380
2442
+ },
2443
+ {
2444
+ "epoch": 1.08,
2445
+ "learning_rate": 0.00022276082444846353,
2446
+ "loss": 0.4766,
2447
+ "step": 381
2448
+ },
2449
+ {
2450
+ "epoch": 1.08,
2451
+ "learning_rate": 0.0002217304300170949,
2452
+ "loss": 0.5072,
2453
+ "step": 382
2454
+ },
2455
+ {
2456
+ "epoch": 1.08,
2457
+ "learning_rate": 0.00022069945157362675,
2458
+ "loss": 0.5265,
2459
+ "step": 383
2460
+ },
2461
+ {
2462
+ "epoch": 1.09,
2463
+ "learning_rate": 0.00021966791682592697,
2464
+ "loss": 0.4095,
2465
+ "step": 384
2466
+ },
2467
+ {
2468
+ "epoch": 1.09,
2469
+ "learning_rate": 0.00021863585349681436,
2470
+ "loss": 0.3976,
2471
+ "step": 385
2472
+ },
2473
+ {
2474
+ "epoch": 1.09,
2475
+ "learning_rate": 0.00021760328932331349,
2476
+ "loss": 0.4774,
2477
+ "step": 386
2478
+ },
2479
+ {
2480
+ "epoch": 1.1,
2481
+ "learning_rate": 0.00021657025205590923,
2482
+ "loss": 0.3426,
2483
+ "step": 387
2484
+ },
2485
+ {
2486
+ "epoch": 1.1,
2487
+ "learning_rate": 0.0002155367694578013,
2488
+ "loss": 0.4508,
2489
+ "step": 388
2490
+ },
2491
+ {
2492
+ "epoch": 1.1,
2493
+ "learning_rate": 0.00021450286930415735,
2494
+ "loss": 0.5369,
2495
+ "step": 389
2496
+ },
2497
+ {
2498
+ "epoch": 1.1,
2499
+ "learning_rate": 0.0002134685793813673,
2500
+ "loss": 0.4261,
2501
+ "step": 390
2502
+ },
2503
+ {
2504
+ "epoch": 1.11,
2505
+ "learning_rate": 0.00021243392748629614,
2506
+ "loss": 0.5256,
2507
+ "step": 391
2508
+ },
2509
+ {
2510
+ "epoch": 1.11,
2511
+ "learning_rate": 0.00021139894142553693,
2512
+ "loss": 0.3956,
2513
+ "step": 392
2514
+ },
2515
+ {
2516
+ "epoch": 1.11,
2517
+ "learning_rate": 0.0002103636490146637,
2518
+ "loss": 0.4001,
2519
+ "step": 393
2520
+ },
2521
+ {
2522
+ "epoch": 1.12,
2523
+ "learning_rate": 0.00020932807807748352,
2524
+ "loss": 0.6379,
2525
+ "step": 394
2526
+ },
2527
+ {
2528
+ "epoch": 1.12,
2529
+ "learning_rate": 0.0002082922564452891,
2530
+ "loss": 0.4611,
2531
+ "step": 395
2532
+ },
2533
+ {
2534
+ "epoch": 1.12,
2535
+ "learning_rate": 0.00020725621195611052,
2536
+ "loss": 0.5071,
2537
+ "step": 396
2538
+ },
2539
+ {
2540
+ "epoch": 1.12,
2541
+ "learning_rate": 0.0002062199724539674,
2542
+ "loss": 0.4864,
2543
+ "step": 397
2544
+ },
2545
+ {
2546
+ "epoch": 1.13,
2547
+ "learning_rate": 0.00020518356578812022,
2548
+ "loss": 0.4323,
2549
+ "step": 398
2550
+ },
2551
+ {
2552
+ "epoch": 1.13,
2553
+ "learning_rate": 0.00020414701981232215,
2554
+ "loss": 0.5897,
2555
+ "step": 399
2556
+ },
2557
+ {
2558
+ "epoch": 1.13,
2559
+ "learning_rate": 0.0002031103623840702,
2560
+ "loss": 0.4404,
2561
+ "step": 400
2562
+ },
2563
+ {
2564
+ "epoch": 1.13,
2565
+ "eval_loss": 0.574560284614563,
2566
+ "eval_runtime": 29.5518,
2567
+ "eval_samples_per_second": 55.124,
2568
+ "eval_steps_per_second": 55.124,
2569
+ "step": 400
2570
+ },
2571
+ {
2572
+ "epoch": 1.14,
2573
+ "learning_rate": 0.0002020736213638569,
2574
+ "loss": 0.4287,
2575
+ "step": 401
2576
+ },
2577
+ {
2578
+ "epoch": 1.14,
2579
+ "learning_rate": 0.0002010368246144213,
2580
+ "loss": 0.5213,
2581
+ "step": 402
2582
+ },
2583
+ {
2584
+ "epoch": 1.14,
2585
+ "learning_rate": 0.0002,
2586
+ "loss": 0.405,
2587
+ "step": 403
2588
+ },
2589
+ {
2590
+ "epoch": 1.14,
2591
+ "learning_rate": 0.00019896317538557878,
2592
+ "loss": 0.4283,
2593
+ "step": 404
2594
+ },
2595
+ {
2596
+ "epoch": 1.15,
2597
+ "learning_rate": 0.0001979263786361431,
2598
+ "loss": 0.4649,
2599
+ "step": 405
2600
+ },
2601
+ {
2602
+ "epoch": 1.15,
2603
+ "learning_rate": 0.00019688963761592981,
2604
+ "loss": 0.6243,
2605
+ "step": 406
2606
+ },
2607
+ {
2608
+ "epoch": 1.15,
2609
+ "learning_rate": 0.00019585298018767798,
2610
+ "loss": 0.4704,
2611
+ "step": 407
2612
+ },
2613
+ {
2614
+ "epoch": 1.16,
2615
+ "learning_rate": 0.00019481643421187978,
2616
+ "loss": 0.4266,
2617
+ "step": 408
2618
+ },
2619
+ {
2620
+ "epoch": 1.16,
2621
+ "learning_rate": 0.00019378002754603265,
2622
+ "loss": 0.4229,
2623
+ "step": 409
2624
+ },
2625
+ {
2626
+ "epoch": 1.16,
2627
+ "learning_rate": 0.00019274378804388952,
2628
+ "loss": 0.3718,
2629
+ "step": 410
2630
+ },
2631
+ {
2632
+ "epoch": 1.16,
2633
+ "learning_rate": 0.00019170774355471094,
2634
+ "loss": 0.4005,
2635
+ "step": 411
2636
+ },
2637
+ {
2638
+ "epoch": 1.17,
2639
+ "learning_rate": 0.0001906719219225165,
2640
+ "loss": 0.4458,
2641
+ "step": 412
2642
+ },
2643
+ {
2644
+ "epoch": 1.17,
2645
+ "learning_rate": 0.00018963635098533633,
2646
+ "loss": 0.4691,
2647
+ "step": 413
2648
+ },
2649
+ {
2650
+ "epoch": 1.17,
2651
+ "learning_rate": 0.00018860105857446306,
2652
+ "loss": 0.5098,
2653
+ "step": 414
2654
+ },
2655
+ {
2656
+ "epoch": 1.18,
2657
+ "learning_rate": 0.0001875660725137039,
2658
+ "loss": 0.4538,
2659
+ "step": 415
2660
+ },
2661
+ {
2662
+ "epoch": 1.18,
2663
+ "learning_rate": 0.00018653142061863273,
2664
+ "loss": 0.5558,
2665
+ "step": 416
2666
+ },
2667
+ {
2668
+ "epoch": 1.18,
2669
+ "learning_rate": 0.00018549713069584276,
2670
+ "loss": 0.6011,
2671
+ "step": 417
2672
+ },
2673
+ {
2674
+ "epoch": 1.18,
2675
+ "learning_rate": 0.00018446323054219875,
2676
+ "loss": 0.3524,
2677
+ "step": 418
2678
+ },
2679
+ {
2680
+ "epoch": 1.19,
2681
+ "learning_rate": 0.00018342974794409079,
2682
+ "loss": 0.5304,
2683
+ "step": 419
2684
+ },
2685
+ {
2686
+ "epoch": 1.19,
2687
+ "learning_rate": 0.00018239671067668661,
2688
+ "loss": 0.3869,
2689
+ "step": 420
2690
+ },
2691
+ {
2692
+ "epoch": 1.19,
2693
+ "eval_loss": 0.5739707350730896,
2694
+ "eval_runtime": 29.5087,
2695
+ "eval_samples_per_second": 55.204,
2696
+ "eval_steps_per_second": 55.204,
2697
+ "step": 420
2698
+ },
2699
+ {
2700
+ "epoch": 1.19,
2701
+ "learning_rate": 0.0001813641465031857,
2702
+ "loss": 0.4354,
2703
+ "step": 421
2704
+ },
2705
+ {
2706
+ "epoch": 1.19,
2707
+ "learning_rate": 0.00018033208317407308,
2708
+ "loss": 0.4195,
2709
+ "step": 422
2710
+ },
2711
+ {
2712
+ "epoch": 1.2,
2713
+ "learning_rate": 0.0001793005484263733,
2714
+ "loss": 0.6035,
2715
+ "step": 423
2716
+ },
2717
+ {
2718
+ "epoch": 1.2,
2719
+ "learning_rate": 0.00017826956998290508,
2720
+ "loss": 0.4244,
2721
+ "step": 424
2722
+ },
2723
+ {
2724
+ "epoch": 1.2,
2725
+ "learning_rate": 0.00017723917555153654,
2726
+ "loss": 0.4614,
2727
+ "step": 425
2728
+ },
2729
+ {
2730
+ "epoch": 1.21,
2731
+ "learning_rate": 0.00017620939282444003,
2732
+ "loss": 0.4522,
2733
+ "step": 426
2734
+ },
2735
+ {
2736
+ "epoch": 1.21,
2737
+ "learning_rate": 0.00017518024947734814,
2738
+ "loss": 0.459,
2739
+ "step": 427
2740
+ },
2741
+ {
2742
+ "epoch": 1.21,
2743
+ "learning_rate": 0.00017415177316881022,
2744
+ "loss": 0.4259,
2745
+ "step": 428
2746
+ },
2747
+ {
2748
+ "epoch": 1.21,
2749
+ "learning_rate": 0.00017312399153944846,
2750
+ "loss": 0.4132,
2751
+ "step": 429
2752
+ },
2753
+ {
2754
+ "epoch": 1.22,
2755
+ "learning_rate": 0.00017209693221121542,
2756
+ "loss": 0.402,
2757
+ "step": 430
2758
+ },
2759
+ {
2760
+ "epoch": 1.22,
2761
+ "learning_rate": 0.00017107062278665165,
2762
+ "loss": 0.4812,
2763
+ "step": 431
2764
+ },
2765
+ {
2766
+ "epoch": 1.22,
2767
+ "learning_rate": 0.00017004509084814372,
2768
+ "loss": 0.3626,
2769
+ "step": 432
2770
+ },
2771
+ {
2772
+ "epoch": 1.23,
2773
+ "learning_rate": 0.00016902036395718305,
2774
+ "loss": 0.4885,
2775
+ "step": 433
2776
+ },
2777
+ {
2778
+ "epoch": 1.23,
2779
+ "learning_rate": 0.00016799646965362524,
2780
+ "loss": 0.5113,
2781
+ "step": 434
2782
+ },
2783
+ {
2784
+ "epoch": 1.23,
2785
+ "learning_rate": 0.00016697343545494974,
2786
+ "loss": 0.5277,
2787
+ "step": 435
2788
+ },
2789
+ {
2790
+ "epoch": 1.23,
2791
+ "learning_rate": 0.00016595128885552027,
2792
+ "loss": 0.5086,
2793
+ "step": 436
2794
+ },
2795
+ {
2796
+ "epoch": 1.24,
2797
+ "learning_rate": 0.00016493005732584647,
2798
+ "loss": 0.3616,
2799
+ "step": 437
2800
+ },
2801
+ {
2802
+ "epoch": 1.24,
2803
+ "learning_rate": 0.00016390976831184476,
2804
+ "loss": 0.599,
2805
+ "step": 438
2806
+ },
2807
+ {
2808
+ "epoch": 1.24,
2809
+ "learning_rate": 0.00016289044923410134,
2810
+ "loss": 0.3622,
2811
+ "step": 439
2812
+ },
2813
+ {
2814
+ "epoch": 1.25,
2815
+ "learning_rate": 0.00016187212748713519,
2816
+ "loss": 0.4129,
2817
+ "step": 440
2818
+ },
2819
+ {
2820
+ "epoch": 1.25,
2821
+ "eval_loss": 0.5777345895767212,
2822
+ "eval_runtime": 29.5678,
2823
+ "eval_samples_per_second": 55.094,
2824
+ "eval_steps_per_second": 55.094,
2825
+ "step": 440
2826
+ },
2827
+ {
2828
+ "epoch": 1.25,
2829
+ "learning_rate": 0.00016085483043866143,
2830
+ "loss": 0.3741,
2831
+ "step": 441
2832
+ },
2833
+ {
2834
+ "epoch": 1.25,
2835
+ "learning_rate": 0.00015983858542885634,
2836
+ "loss": 0.508,
2837
+ "step": 442
2838
+ },
2839
+ {
2840
+ "epoch": 1.25,
2841
+ "learning_rate": 0.00015882341976962216,
2842
+ "loss": 0.4585,
2843
+ "step": 443
2844
+ },
2845
+ {
2846
+ "epoch": 1.26,
2847
+ "learning_rate": 0.0001578093607438534,
2848
+ "loss": 0.4852,
2849
+ "step": 444
2850
+ },
2851
+ {
2852
+ "epoch": 1.26,
2853
+ "learning_rate": 0.00015679643560470336,
2854
+ "loss": 0.5091,
2855
+ "step": 445
2856
+ },
2857
+ {
2858
+ "epoch": 1.26,
2859
+ "learning_rate": 0.00015578467157485165,
2860
+ "loss": 0.5604,
2861
+ "step": 446
2862
+ },
2863
+ {
2864
+ "epoch": 1.27,
2865
+ "learning_rate": 0.0001547740958457731,
2866
+ "loss": 0.5011,
2867
+ "step": 447
2868
+ },
2869
+ {
2870
+ "epoch": 1.27,
2871
+ "learning_rate": 0.00015376473557700613,
2872
+ "loss": 0.5016,
2873
+ "step": 448
2874
+ },
2875
+ {
2876
+ "epoch": 1.27,
2877
+ "learning_rate": 0.0001527566178954235,
2878
+ "loss": 0.4144,
2879
+ "step": 449
2880
+ },
2881
+ {
2882
+ "epoch": 1.27,
2883
+ "learning_rate": 0.00015174976989450314,
2884
+ "loss": 0.4511,
2885
+ "step": 450
2886
+ },
2887
+ {
2888
+ "epoch": 1.28,
2889
+ "learning_rate": 0.00015074421863359974,
2890
+ "loss": 0.4535,
2891
+ "step": 451
2892
+ },
2893
+ {
2894
+ "epoch": 1.28,
2895
+ "learning_rate": 0.0001497399911372178,
2896
+ "loss": 0.4065,
2897
+ "step": 452
2898
+ },
2899
+ {
2900
+ "epoch": 1.28,
2901
+ "learning_rate": 0.0001487371143942852,
2902
+ "loss": 0.6148,
2903
+ "step": 453
2904
+ },
2905
+ {
2906
+ "epoch": 1.29,
2907
+ "learning_rate": 0.00014773561535742793,
2908
+ "loss": 0.5625,
2909
+ "step": 454
2910
+ },
2911
+ {
2912
+ "epoch": 1.29,
2913
+ "learning_rate": 0.00014673552094224553,
2914
+ "loss": 0.3462,
2915
+ "step": 455
2916
+ },
2917
+ {
2918
+ "epoch": 1.29,
2919
+ "learning_rate": 0.00014573685802658824,
2920
+ "loss": 0.5958,
2921
+ "step": 456
2922
+ },
2923
+ {
2924
+ "epoch": 1.29,
2925
+ "learning_rate": 0.00014473965344983397,
2926
+ "loss": 0.4676,
2927
+ "step": 457
2928
+ },
2929
+ {
2930
+ "epoch": 1.3,
2931
+ "learning_rate": 0.00014374393401216746,
2932
+ "loss": 0.5282,
2933
+ "step": 458
2934
+ },
2935
+ {
2936
+ "epoch": 1.3,
2937
+ "learning_rate": 0.0001427497264738599,
2938
+ "loss": 0.4669,
2939
+ "step": 459
2940
+ },
2941
+ {
2942
+ "epoch": 1.3,
2943
+ "learning_rate": 0.00014175705755454962,
2944
+ "loss": 0.4209,
2945
+ "step": 460
2946
+ },
2947
+ {
2948
+ "epoch": 1.3,
2949
+ "eval_loss": 0.5824912786483765,
2950
+ "eval_runtime": 29.5128,
2951
+ "eval_samples_per_second": 55.196,
2952
+ "eval_steps_per_second": 55.196,
2953
+ "step": 460
2954
+ },
2955
+ {
2956
+ "epoch": 1.31,
2957
+ "learning_rate": 0.00014076595393252412,
2958
+ "loss": 0.5164,
2959
+ "step": 461
2960
+ },
2961
+ {
2962
+ "epoch": 1.31,
2963
+ "learning_rate": 0.00013977644224400312,
2964
+ "loss": 0.4663,
2965
+ "step": 462
2966
+ },
2967
+ {
2968
+ "epoch": 1.31,
2969
+ "learning_rate": 0.00013878854908242256,
2970
+ "loss": 0.4182,
2971
+ "step": 463
2972
+ },
2973
+ {
2974
+ "epoch": 1.31,
2975
+ "learning_rate": 0.00013780230099771988,
2976
+ "loss": 0.525,
2977
+ "step": 464
2978
+ },
2979
+ {
2980
+ "epoch": 1.32,
2981
+ "learning_rate": 0.0001368177244956208,
2982
+ "loss": 0.4229,
2983
+ "step": 465
2984
+ },
2985
+ {
2986
+ "epoch": 1.32,
2987
+ "learning_rate": 0.0001358348460369265,
2988
+ "loss": 0.5392,
2989
+ "step": 466
2990
+ },
2991
+ {
2992
+ "epoch": 1.32,
2993
+ "learning_rate": 0.00013485369203680283,
2994
+ "loss": 0.436,
2995
+ "step": 467
2996
+ },
2997
+ {
2998
+ "epoch": 1.33,
2999
+ "learning_rate": 0.00013387428886407014,
3000
+ "loss": 0.4743,
3001
+ "step": 468
3002
+ },
3003
+ {
3004
+ "epoch": 1.33,
3005
+ "learning_rate": 0.00013289666284049503,
3006
+ "loss": 0.4443,
3007
+ "step": 469
3008
+ },
3009
+ {
3010
+ "epoch": 1.33,
3011
+ "learning_rate": 0.0001319208402400824,
3012
+ "loss": 0.4095,
3013
+ "step": 470
3014
+ },
3015
+ {
3016
+ "epoch": 1.33,
3017
+ "learning_rate": 0.00013094684728836962,
3018
+ "loss": 0.4275,
3019
+ "step": 471
3020
+ },
3021
+ {
3022
+ "epoch": 1.34,
3023
+ "learning_rate": 0.00012997471016172187,
3024
+ "loss": 0.5256,
3025
+ "step": 472
3026
+ },
3027
+ {
3028
+ "epoch": 1.34,
3029
+ "learning_rate": 0.0001290044549866283,
3030
+ "loss": 0.5106,
3031
+ "step": 473
3032
+ },
3033
+ {
3034
+ "epoch": 1.34,
3035
+ "learning_rate": 0.0001280361078389998,
3036
+ "loss": 0.5659,
3037
+ "step": 474
3038
+ },
3039
+ {
3040
+ "epoch": 1.34,
3041
+ "learning_rate": 0.000127069694743469,
3042
+ "loss": 0.5246,
3043
+ "step": 475
3044
+ },
3045
+ {
3046
+ "epoch": 1.35,
3047
+ "learning_rate": 0.00012610524167268975,
3048
+ "loss": 0.4125,
3049
+ "step": 476
3050
+ },
3051
+ {
3052
+ "epoch": 1.35,
3053
+ "learning_rate": 0.0001251427745466398,
3054
+ "loss": 0.647,
3055
+ "step": 477
3056
+ },
3057
+ {
3058
+ "epoch": 1.35,
3059
+ "learning_rate": 0.00012418231923192415,
3060
+ "loss": 0.4888,
3061
+ "step": 478
3062
+ },
3063
+ {
3064
+ "epoch": 1.36,
3065
+ "learning_rate": 0.00012322390154107952,
3066
+ "loss": 0.4619,
3067
+ "step": 479
3068
+ },
3069
+ {
3070
+ "epoch": 1.36,
3071
+ "learning_rate": 0.00012226754723188097,
3072
+ "loss": 0.4014,
3073
+ "step": 480
3074
+ },
3075
+ {
3076
+ "epoch": 1.36,
3077
+ "eval_loss": 0.5741853713989258,
3078
+ "eval_runtime": 29.4992,
3079
+ "eval_samples_per_second": 55.222,
3080
+ "eval_steps_per_second": 55.222,
3081
+ "step": 480
3082
+ },
3083
+ {
3084
+ "epoch": 1.36,
3085
+ "learning_rate": 0.00012131328200664955,
3086
+ "loss": 0.3622,
3087
+ "step": 481
3088
+ },
3089
+ {
3090
+ "epoch": 1.36,
3091
+ "learning_rate": 0.0001203611315115615,
3092
+ "loss": 0.4422,
3093
+ "step": 482
3094
+ },
3095
+ {
3096
+ "epoch": 1.37,
3097
+ "learning_rate": 0.00011941112133595882,
3098
+ "loss": 0.5294,
3099
+ "step": 483
3100
+ },
3101
+ {
3102
+ "epoch": 1.37,
3103
+ "learning_rate": 0.00011846327701166226,
3104
+ "loss": 0.583,
3105
+ "step": 484
3106
+ },
3107
+ {
3108
+ "epoch": 1.37,
3109
+ "learning_rate": 0.00011751762401228414,
3110
+ "loss": 0.4461,
3111
+ "step": 485
3112
+ },
3113
+ {
3114
+ "epoch": 1.38,
3115
+ "learning_rate": 0.00011657418775254436,
3116
+ "loss": 0.427,
3117
+ "step": 486
3118
+ },
3119
+ {
3120
+ "epoch": 1.38,
3121
+ "learning_rate": 0.00011563299358758757,
3122
+ "loss": 0.5413,
3123
+ "step": 487
3124
+ },
3125
+ {
3126
+ "epoch": 1.38,
3127
+ "learning_rate": 0.000114694066812301,
3128
+ "loss": 0.4541,
3129
+ "step": 488
3130
+ },
3131
+ {
3132
+ "epoch": 1.38,
3133
+ "learning_rate": 0.00011375743266063508,
3134
+ "loss": 0.5347,
3135
+ "step": 489
3136
+ },
3137
+ {
3138
+ "epoch": 1.39,
3139
+ "learning_rate": 0.00011282311630492579,
3140
+ "loss": 0.5056,
3141
+ "step": 490
3142
+ },
3143
+ {
3144
+ "epoch": 1.39,
3145
+ "learning_rate": 0.00011189114285521705,
3146
+ "loss": 0.5073,
3147
+ "step": 491
3148
+ },
3149
+ {
3150
+ "epoch": 1.39,
3151
+ "learning_rate": 0.0001109615373585866,
3152
+ "loss": 0.4864,
3153
+ "step": 492
3154
+ },
3155
+ {
3156
+ "epoch": 1.4,
3157
+ "learning_rate": 0.00011003432479847284,
3158
+ "loss": 0.5461,
3159
+ "step": 493
3160
+ },
3161
+ {
3162
+ "epoch": 1.4,
3163
+ "learning_rate": 0.00010910953009400323,
3164
+ "loss": 0.4275,
3165
+ "step": 494
3166
+ },
3167
+ {
3168
+ "epoch": 1.4,
3169
+ "learning_rate": 0.00010818717809932435,
3170
+ "loss": 0.4805,
3171
+ "step": 495
3172
+ },
3173
+ {
3174
+ "epoch": 1.4,
3175
+ "learning_rate": 0.0001072672936029345,
3176
+ "loss": 0.4679,
3177
+ "step": 496
3178
+ },
3179
+ {
3180
+ "epoch": 1.41,
3181
+ "learning_rate": 0.0001063499013270172,
3182
+ "loss": 0.3686,
3183
+ "step": 497
3184
+ },
3185
+ {
3186
+ "epoch": 1.41,
3187
+ "learning_rate": 0.00010543502592677646,
3188
+ "loss": 0.5115,
3189
+ "step": 498
3190
+ },
3191
+ {
3192
+ "epoch": 1.41,
3193
+ "learning_rate": 0.00010452269198977456,
3194
+ "loss": 0.3532,
3195
+ "step": 499
3196
+ },
3197
+ {
3198
+ "epoch": 1.42,
3199
+ "learning_rate": 0.00010361292403527154,
3200
+ "loss": 0.3333,
3201
+ "step": 500
3202
+ },
3203
+ {
3204
+ "epoch": 1.42,
3205
+ "eval_loss": 0.5851367712020874,
3206
+ "eval_runtime": 29.5774,
3207
+ "eval_samples_per_second": 55.076,
3208
+ "eval_steps_per_second": 55.076,
3209
+ "step": 500
3210
+ },
3211
+ {
3212
+ "epoch": 1.42,
3213
+ "learning_rate": 0.00010270574651356541,
3214
+ "loss": 0.4008,
3215
+ "step": 501
3216
+ },
3217
+ {
3218
+ "epoch": 1.42,
3219
+ "learning_rate": 0.00010180118380533559,
3220
+ "loss": 0.5154,
3221
+ "step": 502
3222
+ },
3223
+ {
3224
+ "epoch": 1.42,
3225
+ "learning_rate": 0.00010089926022098767,
3226
+ "loss": 0.4936,
3227
+ "step": 503
3228
+ },
3229
+ {
3230
+ "epoch": 1.43,
3231
+ "learning_rate": 0.00010000000000000005,
3232
+ "loss": 0.3771,
3233
+ "step": 504
3234
+ },
3235
+ {
3236
+ "epoch": 1.43,
3237
+ "learning_rate": 9.910342731027206e-05,
3238
+ "loss": 0.4883,
3239
+ "step": 505
3240
+ },
3241
+ {
3242
+ "epoch": 1.43,
3243
+ "learning_rate": 9.820956624747513e-05,
3244
+ "loss": 0.4783,
3245
+ "step": 506
3246
+ },
3247
+ {
3248
+ "epoch": 1.44,
3249
+ "learning_rate": 9.731844083440478e-05,
3250
+ "loss": 0.3825,
3251
+ "step": 507
3252
+ },
3253
+ {
3254
+ "epoch": 1.44,
3255
+ "learning_rate": 9.643007502033493e-05,
3256
+ "loss": 0.4128,
3257
+ "step": 508
3258
+ },
3259
+ {
3260
+ "epoch": 1.44,
3261
+ "learning_rate": 9.554449268037464e-05,
3262
+ "loss": 0.3869,
3263
+ "step": 509
3264
+ },
3265
+ {
3266
+ "epoch": 1.44,
3267
+ "learning_rate": 9.466171761482602e-05,
3268
+ "loss": 0.4742,
3269
+ "step": 510
3270
+ },
3271
+ {
3272
+ "epoch": 1.45,
3273
+ "learning_rate": 9.378177354854498e-05,
3274
+ "loss": 0.4733,
3275
+ "step": 511
3276
+ },
3277
+ {
3278
+ "epoch": 1.45,
3279
+ "learning_rate": 9.290468413030342e-05,
3280
+ "loss": 0.4182,
3281
+ "step": 512
3282
+ },
3283
+ {
3284
+ "epoch": 1.45,
3285
+ "learning_rate": 9.203047293215349e-05,
3286
+ "loss": 0.3875,
3287
+ "step": 513
3288
+ },
3289
+ {
3290
+ "epoch": 1.46,
3291
+ "learning_rate": 9.115916344879451e-05,
3292
+ "loss": 0.4561,
3293
+ "step": 514
3294
+ },
3295
+ {
3296
+ "epoch": 1.46,
3297
+ "learning_rate": 9.029077909694128e-05,
3298
+ "loss": 0.4582,
3299
+ "step": 515
3300
+ },
3301
+ {
3302
+ "epoch": 1.46,
3303
+ "learning_rate": 8.942534321469463e-05,
3304
+ "loss": 0.3878,
3305
+ "step": 516
3306
+ },
3307
+ {
3308
+ "epoch": 1.46,
3309
+ "learning_rate": 8.856287906091434e-05,
3310
+ "loss": 0.4842,
3311
+ "step": 517
3312
+ },
3313
+ {
3314
+ "epoch": 1.47,
3315
+ "learning_rate": 8.770340981459424e-05,
3316
+ "loss": 0.4127,
3317
+ "step": 518
3318
+ },
3319
+ {
3320
+ "epoch": 1.47,
3321
+ "learning_rate": 8.684695857423906e-05,
3322
+ "loss": 0.343,
3323
+ "step": 519
3324
+ },
3325
+ {
3326
+ "epoch": 1.47,
3327
+ "learning_rate": 8.599354835724347e-05,
3328
+ "loss": 0.5041,
3329
+ "step": 520
3330
+ },
3331
+ {
3332
+ "epoch": 1.47,
3333
+ "eval_loss": 0.5797593593597412,
3334
+ "eval_runtime": 29.4998,
3335
+ "eval_samples_per_second": 55.221,
3336
+ "eval_steps_per_second": 55.221,
3337
+ "step": 520
3338
+ },
3339
+ {
3340
+ "epoch": 1.48,
3341
+ "learning_rate": 8.514320209927392e-05,
3342
+ "loss": 0.4945,
3343
+ "step": 521
3344
+ },
3345
+ {
3346
+ "epoch": 1.48,
3347
+ "learning_rate": 8.429594265365193e-05,
3348
+ "loss": 0.4627,
3349
+ "step": 522
3350
+ },
3351
+ {
3352
+ "epoch": 1.48,
3353
+ "learning_rate": 8.345179279073982e-05,
3354
+ "loss": 0.4855,
3355
+ "step": 523
3356
+ },
3357
+ {
3358
+ "epoch": 1.48,
3359
+ "learning_rate": 8.261077519732914e-05,
3360
+ "loss": 0.4253,
3361
+ "step": 524
3362
+ },
3363
+ {
3364
+ "epoch": 1.49,
3365
+ "learning_rate": 8.177291247603068e-05,
3366
+ "loss": 0.5328,
3367
+ "step": 525
3368
+ },
3369
+ {
3370
+ "epoch": 1.49,
3371
+ "learning_rate": 8.093822714466686e-05,
3372
+ "loss": 0.5276,
3373
+ "step": 526
3374
+ },
3375
+ {
3376
+ "epoch": 1.49,
3377
+ "learning_rate": 8.01067416356668e-05,
3378
+ "loss": 0.5293,
3379
+ "step": 527
3380
+ },
3381
+ {
3382
+ "epoch": 1.49,
3383
+ "learning_rate": 7.927847829546374e-05,
3384
+ "loss": 0.5709,
3385
+ "step": 528
3386
+ },
3387
+ {
3388
+ "epoch": 1.5,
3389
+ "learning_rate": 7.845345938389372e-05,
3390
+ "loss": 0.3874,
3391
+ "step": 529
3392
+ },
3393
+ {
3394
+ "epoch": 1.5,
3395
+ "learning_rate": 7.763170707359781e-05,
3396
+ "loss": 0.6164,
3397
+ "step": 530
3398
+ },
3399
+ {
3400
+ "epoch": 1.5,
3401
+ "learning_rate": 7.68132434494263e-05,
3402
+ "loss": 0.4348,
3403
+ "step": 531
3404
+ },
3405
+ {
3406
+ "epoch": 1.51,
3407
+ "learning_rate": 7.5998090507845e-05,
3408
+ "loss": 0.4215,
3409
+ "step": 532
3410
+ },
3411
+ {
3412
+ "epoch": 1.51,
3413
+ "learning_rate": 7.518627015634392e-05,
3414
+ "loss": 0.4744,
3415
+ "step": 533
3416
+ },
3417
+ {
3418
+ "epoch": 1.51,
3419
+ "learning_rate": 7.437780421284883e-05,
3420
+ "loss": 0.4775,
3421
+ "step": 534
3422
+ },
3423
+ {
3424
+ "epoch": 1.51,
3425
+ "learning_rate": 7.357271440513473e-05,
3426
+ "loss": 0.5049,
3427
+ "step": 535
3428
+ },
3429
+ {
3430
+ "epoch": 1.52,
3431
+ "learning_rate": 7.277102237024178e-05,
3432
+ "loss": 0.4757,
3433
+ "step": 536
3434
+ },
3435
+ {
3436
+ "epoch": 1.52,
3437
+ "learning_rate": 7.197274965389413e-05,
3438
+ "loss": 0.4429,
3439
+ "step": 537
3440
+ },
3441
+ {
3442
+ "epoch": 1.52,
3443
+ "learning_rate": 7.117791770992047e-05,
3444
+ "loss": 0.4628,
3445
+ "step": 538
3446
+ },
3447
+ {
3448
+ "epoch": 1.53,
3449
+ "learning_rate": 7.038654789967776e-05,
3450
+ "loss": 0.5186,
3451
+ "step": 539
3452
+ },
3453
+ {
3454
+ "epoch": 1.53,
3455
+ "learning_rate": 6.959866149147716e-05,
3456
+ "loss": 0.5528,
3457
+ "step": 540
3458
+ },
3459
+ {
3460
+ "epoch": 1.53,
3461
+ "eval_loss": 0.5631201267242432,
3462
+ "eval_runtime": 29.5533,
3463
+ "eval_samples_per_second": 55.121,
3464
+ "eval_steps_per_second": 55.121,
3465
+ "step": 540
3466
+ },
3467
+ {
3468
+ "epoch": 1.53,
3469
+ "learning_rate": 6.881427966001202e-05,
3470
+ "loss": 0.4201,
3471
+ "step": 541
3472
+ },
3473
+ {
3474
+ "epoch": 1.53,
3475
+ "learning_rate": 6.803342348578938e-05,
3476
+ "loss": 0.3929,
3477
+ "step": 542
3478
+ },
3479
+ {
3480
+ "epoch": 1.54,
3481
+ "learning_rate": 6.72561139545629e-05,
3482
+ "loss": 0.5163,
3483
+ "step": 543
3484
+ },
3485
+ {
3486
+ "epoch": 1.54,
3487
+ "learning_rate": 6.648237195676928e-05,
3488
+ "loss": 0.4811,
3489
+ "step": 544
3490
+ },
3491
+ {
3492
+ "epoch": 1.54,
3493
+ "learning_rate": 6.571221828696664e-05,
3494
+ "loss": 0.5658,
3495
+ "step": 545
3496
+ },
3497
+ {
3498
+ "epoch": 1.55,
3499
+ "learning_rate": 6.494567364327549e-05,
3500
+ "loss": 0.5507,
3501
+ "step": 546
3502
+ },
3503
+ {
3504
+ "epoch": 1.55,
3505
+ "learning_rate": 6.418275862682286e-05,
3506
+ "loss": 0.4629,
3507
+ "step": 547
3508
+ },
3509
+ {
3510
+ "epoch": 1.55,
3511
+ "learning_rate": 6.342349374118817e-05,
3512
+ "loss": 0.4757,
3513
+ "step": 548
3514
+ },
3515
+ {
3516
+ "epoch": 1.55,
3517
+ "learning_rate": 6.266789939185265e-05,
3518
+ "loss": 0.3063,
3519
+ "step": 549
3520
+ },
3521
+ {
3522
+ "epoch": 1.56,
3523
+ "learning_rate": 6.191599588565067e-05,
3524
+ "loss": 0.3894,
3525
+ "step": 550
3526
+ },
3527
+ {
3528
+ "epoch": 1.56,
3529
+ "learning_rate": 6.116780343022393e-05,
3530
+ "loss": 0.4114,
3531
+ "step": 551
3532
+ },
3533
+ {
3534
+ "epoch": 1.56,
3535
+ "learning_rate": 6.042334213347856e-05,
3536
+ "loss": 0.399,
3537
+ "step": 552
3538
+ },
3539
+ {
3540
+ "epoch": 1.57,
3541
+ "learning_rate": 5.9682632003044695e-05,
3542
+ "loss": 0.4437,
3543
+ "step": 553
3544
+ },
3545
+ {
3546
+ "epoch": 1.57,
3547
+ "learning_rate": 5.8945692945738596e-05,
3548
+ "loss": 0.4709,
3549
+ "step": 554
3550
+ },
3551
+ {
3552
+ "epoch": 1.57,
3553
+ "learning_rate": 5.821254476702767e-05,
3554
+ "loss": 0.4779,
3555
+ "step": 555
3556
+ },
3557
+ {
3558
+ "epoch": 1.57,
3559
+ "learning_rate": 5.748320717049862e-05,
3560
+ "loss": 0.4662,
3561
+ "step": 556
3562
+ },
3563
+ {
3564
+ "epoch": 1.58,
3565
+ "learning_rate": 5.6757699757327257e-05,
3566
+ "loss": 0.4706,
3567
+ "step": 557
3568
+ },
3569
+ {
3570
+ "epoch": 1.58,
3571
+ "learning_rate": 5.603604202575199e-05,
3572
+ "loss": 0.5546,
3573
+ "step": 558
3574
+ },
3575
+ {
3576
+ "epoch": 1.58,
3577
+ "learning_rate": 5.531825337055005e-05,
3578
+ "loss": 0.4415,
3579
+ "step": 559
3580
+ },
3581
+ {
3582
+ "epoch": 1.59,
3583
+ "learning_rate": 5.460435308251597e-05,
3584
+ "loss": 0.4372,
3585
+ "step": 560
3586
+ },
3587
+ {
3588
+ "epoch": 1.59,
3589
+ "eval_loss": 0.5746860504150391,
3590
+ "eval_runtime": 29.5006,
3591
+ "eval_samples_per_second": 55.219,
3592
+ "eval_steps_per_second": 55.219,
3593
+ "step": 560
3594
+ },
3595
+ {
3596
+ "epoch": 1.59,
3597
+ "learning_rate": 5.3894360347943016e-05,
3598
+ "loss": 0.4186,
3599
+ "step": 561
3600
+ },
3601
+ {
3602
+ "epoch": 1.59,
3603
+ "learning_rate": 5.318829424810796e-05,
3604
+ "loss": 0.4436,
3605
+ "step": 562
3606
+ },
3607
+ {
3608
+ "epoch": 1.59,
3609
+ "learning_rate": 5.2486173758758e-05,
3610
+ "loss": 0.3979,
3611
+ "step": 563
3612
+ },
3613
+ {
3614
+ "epoch": 1.6,
3615
+ "learning_rate": 5.178801774960065e-05,
3616
+ "loss": 0.3732,
3617
+ "step": 564
3618
+ },
3619
+ {
3620
+ "epoch": 1.6,
3621
+ "learning_rate": 5.109384498379699e-05,
3622
+ "loss": 0.3469,
3623
+ "step": 565
3624
+ },
3625
+ {
3626
+ "epoch": 1.6,
3627
+ "learning_rate": 5.040367411745701e-05,
3628
+ "loss": 0.4271,
3629
+ "step": 566
3630
+ },
3631
+ {
3632
+ "epoch": 1.61,
3633
+ "learning_rate": 4.971752369913856e-05,
3634
+ "loss": 0.4189,
3635
+ "step": 567
3636
+ },
3637
+ {
3638
+ "epoch": 1.61,
3639
+ "learning_rate": 4.903541216934864e-05,
3640
+ "loss": 0.5201,
3641
+ "step": 568
3642
+ },
3643
+ {
3644
+ "epoch": 1.61,
3645
+ "learning_rate": 4.835735786004774e-05,
3646
+ "loss": 0.4036,
3647
+ "step": 569
3648
+ },
3649
+ {
3650
+ "epoch": 1.61,
3651
+ "learning_rate": 4.768337899415749e-05,
3652
+ "loss": 0.5698,
3653
+ "step": 570
3654
+ },
3655
+ {
3656
+ "epoch": 1.62,
3657
+ "learning_rate": 4.7013493685070484e-05,
3658
+ "loss": 0.4032,
3659
+ "step": 571
3660
+ },
3661
+ {
3662
+ "epoch": 1.62,
3663
+ "learning_rate": 4.634771993616389e-05,
3664
+ "loss": 0.4928,
3665
+ "step": 572
3666
+ },
3667
+ {
3668
+ "epoch": 1.62,
3669
+ "learning_rate": 4.568607564031535e-05,
3670
+ "loss": 0.3489,
3671
+ "step": 573
3672
+ },
3673
+ {
3674
+ "epoch": 1.63,
3675
+ "learning_rate": 4.502857857942204e-05,
3676
+ "loss": 0.506,
3677
+ "step": 574
3678
+ },
3679
+ {
3680
+ "epoch": 1.63,
3681
+ "learning_rate": 4.4375246423923125e-05,
3682
+ "loss": 0.3895,
3683
+ "step": 575
3684
+ },
3685
+ {
3686
+ "epoch": 1.63,
3687
+ "learning_rate": 4.3726096732324415e-05,
3688
+ "loss": 0.4829,
3689
+ "step": 576
3690
+ },
3691
+ {
3692
+ "epoch": 1.63,
3693
+ "learning_rate": 4.3081146950726804e-05,
3694
+ "loss": 0.4555,
3695
+ "step": 577
3696
+ },
3697
+ {
3698
+ "epoch": 1.64,
3699
+ "learning_rate": 4.2440414412357376e-05,
3700
+ "loss": 0.5311,
3701
+ "step": 578
3702
+ },
3703
+ {
3704
+ "epoch": 1.64,
3705
+ "learning_rate": 4.1803916337103275e-05,
3706
+ "loss": 0.398,
3707
+ "step": 579
3708
+ },
3709
+ {
3710
+ "epoch": 1.64,
3711
+ "learning_rate": 4.11716698310493e-05,
3712
+ "loss": 0.3901,
3713
+ "step": 580
3714
+ },
3715
+ {
3716
+ "epoch": 1.64,
3717
+ "eval_loss": 0.5625116229057312,
3718
+ "eval_runtime": 29.4983,
3719
+ "eval_samples_per_second": 55.224,
3720
+ "eval_steps_per_second": 55.224,
3721
+ "step": 580
3722
+ },
3723
+ {
3724
+ "epoch": 1.65,
3725
+ "learning_rate": 4.054369188601796e-05,
3726
+ "loss": 0.3709,
3727
+ "step": 581
3728
+ },
3729
+ {
3730
+ "epoch": 1.65,
3731
+ "learning_rate": 3.991999937911282e-05,
3732
+ "loss": 0.3773,
3733
+ "step": 582
3734
+ },
3735
+ {
3736
+ "epoch": 1.65,
3737
+ "learning_rate": 3.930060907226485e-05,
3738
+ "loss": 0.502,
3739
+ "step": 583
3740
+ },
3741
+ {
3742
+ "epoch": 1.65,
3743
+ "learning_rate": 3.8685537611782355e-05,
3744
+ "loss": 0.5624,
3745
+ "step": 584
3746
+ },
3747
+ {
3748
+ "epoch": 1.66,
3749
+ "learning_rate": 3.807480152790302e-05,
3750
+ "loss": 0.5273,
3751
+ "step": 585
3752
+ },
3753
+ {
3754
+ "epoch": 1.66,
3755
+ "learning_rate": 3.7468417234349976e-05,
3756
+ "loss": 0.3771,
3757
+ "step": 586
3758
+ },
3759
+ {
3760
+ "epoch": 1.66,
3761
+ "learning_rate": 3.686640102789067e-05,
3762
+ "loss": 0.3751,
3763
+ "step": 587
3764
+ },
3765
+ {
3766
+ "epoch": 1.66,
3767
+ "learning_rate": 3.6268769087898956e-05,
3768
+ "loss": 0.4526,
3769
+ "step": 588
3770
+ },
3771
+ {
3772
+ "epoch": 1.67,
3773
+ "learning_rate": 3.567553747591988e-05,
3774
+ "loss": 0.335,
3775
+ "step": 589
3776
+ },
3777
+ {
3778
+ "epoch": 1.67,
3779
+ "learning_rate": 3.508672213523854e-05,
3780
+ "loss": 0.4781,
3781
+ "step": 590
3782
+ },
3783
+ {
3784
+ "epoch": 1.67,
3785
+ "learning_rate": 3.4502338890451315e-05,
3786
+ "loss": 0.3673,
3787
+ "step": 591
3788
+ },
3789
+ {
3790
+ "epoch": 1.68,
3791
+ "learning_rate": 3.39224034470405e-05,
3792
+ "loss": 0.4073,
3793
+ "step": 592
3794
+ },
3795
+ {
3796
+ "epoch": 1.68,
3797
+ "learning_rate": 3.3346931390952464e-05,
3798
+ "loss": 0.4014,
3799
+ "step": 593
3800
+ },
3801
+ {
3802
+ "epoch": 1.68,
3803
+ "learning_rate": 3.277593818817863e-05,
3804
+ "loss": 0.4375,
3805
+ "step": 594
3806
+ },
3807
+ {
3808
+ "epoch": 1.68,
3809
+ "learning_rate": 3.2209439184339804e-05,
3810
+ "loss": 0.4856,
3811
+ "step": 595
3812
+ },
3813
+ {
3814
+ "epoch": 1.69,
3815
+ "learning_rate": 3.164744960427373e-05,
3816
+ "loss": 0.5534,
3817
+ "step": 596
3818
+ },
3819
+ {
3820
+ "epoch": 1.69,
3821
+ "learning_rate": 3.1089984551626106e-05,
3822
+ "loss": 0.3766,
3823
+ "step": 597
3824
+ },
3825
+ {
3826
+ "epoch": 1.69,
3827
+ "learning_rate": 3.053705900844452e-05,
3828
+ "loss": 0.541,
3829
+ "step": 598
3830
+ },
3831
+ {
3832
+ "epoch": 1.7,
3833
+ "learning_rate": 2.9988687834775707e-05,
3834
+ "loss": 0.3937,
3835
+ "step": 599
3836
+ },
3837
+ {
3838
+ "epoch": 1.7,
3839
+ "learning_rate": 2.9444885768266427e-05,
3840
+ "loss": 0.5271,
3841
+ "step": 600
3842
+ },
3843
+ {
3844
+ "epoch": 1.7,
3845
+ "eval_loss": 0.5745556950569153,
3846
+ "eval_runtime": 29.5072,
3847
+ "eval_samples_per_second": 55.207,
3848
+ "eval_steps_per_second": 55.207,
3849
+ "step": 600
3850
+ },
3851
+ {
3852
+ "epoch": 1.7,
3853
+ "learning_rate": 2.8905667423767256e-05,
3854
+ "loss": 0.4961,
3855
+ "step": 601
3856
+ },
3857
+ {
3858
+ "epoch": 1.7,
3859
+ "learning_rate": 2.8371047292939645e-05,
3860
+ "loss": 0.306,
3861
+ "step": 602
3862
+ },
3863
+ {
3864
+ "epoch": 1.71,
3865
+ "learning_rate": 2.7841039743866848e-05,
3866
+ "loss": 0.4234,
3867
+ "step": 603
3868
+ },
3869
+ {
3870
+ "epoch": 1.71,
3871
+ "learning_rate": 2.7315659020667307e-05,
3872
+ "loss": 0.4259,
3873
+ "step": 604
3874
+ },
3875
+ {
3876
+ "epoch": 1.71,
3877
+ "learning_rate": 2.679491924311226e-05,
3878
+ "loss": 0.5458,
3879
+ "step": 605
3880
+ },
3881
+ {
3882
+ "epoch": 1.72,
3883
+ "learning_rate": 2.6278834406246054e-05,
3884
+ "loss": 0.4212,
3885
+ "step": 606
3886
+ },
3887
+ {
3888
+ "epoch": 1.72,
3889
+ "learning_rate": 2.576741838000991e-05,
3890
+ "loss": 0.445,
3891
+ "step": 607
3892
+ },
3893
+ {
3894
+ "epoch": 1.72,
3895
+ "learning_rate": 2.526068490886946e-05,
3896
+ "loss": 0.4042,
3897
+ "step": 608
3898
+ },
3899
+ {
3900
+ "epoch": 1.72,
3901
+ "learning_rate": 2.4758647611445152e-05,
3902
+ "loss": 0.4857,
3903
+ "step": 609
3904
+ },
3905
+ {
3906
+ "epoch": 1.73,
3907
+ "learning_rate": 2.4261319980146292e-05,
3908
+ "loss": 0.4402,
3909
+ "step": 610
3910
+ },
3911
+ {
3912
+ "epoch": 1.73,
3913
+ "learning_rate": 2.3768715380808316e-05,
3914
+ "loss": 0.4056,
3915
+ "step": 611
3916
+ },
3917
+ {
3918
+ "epoch": 1.73,
3919
+ "learning_rate": 2.3280847052333976e-05,
3920
+ "loss": 0.4577,
3921
+ "step": 612
3922
+ },
3923
+ {
3924
+ "epoch": 1.74,
3925
+ "learning_rate": 2.279772810633707e-05,
3926
+ "loss": 0.3902,
3927
+ "step": 613
3928
+ },
3929
+ {
3930
+ "epoch": 1.74,
3931
+ "learning_rate": 2.2319371526790223e-05,
3932
+ "loss": 0.4658,
3933
+ "step": 614
3934
+ },
3935
+ {
3936
+ "epoch": 1.74,
3937
+ "learning_rate": 2.1845790169676074e-05,
3938
+ "loss": 0.3919,
3939
+ "step": 615
3940
+ },
3941
+ {
3942
+ "epoch": 1.74,
3943
+ "learning_rate": 2.137699676264171e-05,
3944
+ "loss": 0.4294,
3945
+ "step": 616
3946
+ },
3947
+ {
3948
+ "epoch": 1.75,
3949
+ "learning_rate": 2.091300390465638e-05,
3950
+ "loss": 0.3718,
3951
+ "step": 617
3952
+ },
3953
+ {
3954
+ "epoch": 1.75,
3955
+ "learning_rate": 2.0453824065673222e-05,
3956
+ "loss": 0.5159,
3957
+ "step": 618
3958
+ },
3959
+ {
3960
+ "epoch": 1.75,
3961
+ "learning_rate": 1.9999469586293996e-05,
3962
+ "loss": 0.4383,
3963
+ "step": 619
3964
+ },
3965
+ {
3966
+ "epoch": 1.76,
3967
+ "learning_rate": 1.9549952677437354e-05,
3968
+ "loss": 0.4283,
3969
+ "step": 620
3970
+ },
3971
+ {
3972
+ "epoch": 1.76,
3973
+ "eval_loss": 0.566196084022522,
3974
+ "eval_runtime": 29.5086,
3975
+ "eval_samples_per_second": 55.204,
3976
+ "eval_steps_per_second": 55.204,
3977
+ "step": 620
3978
+ },
3979
+ {
3980
+ "epoch": 1.76,
3981
+ "learning_rate": 1.9105285420010598e-05,
3982
+ "loss": 0.3683,
3983
+ "step": 621
3984
+ },
3985
+ {
3986
+ "epoch": 1.76,
3987
+ "learning_rate": 1.8665479764585503e-05,
3988
+ "loss": 0.424,
3989
+ "step": 622
3990
+ },
3991
+ {
3992
+ "epoch": 1.76,
3993
+ "learning_rate": 1.8230547531076403e-05,
3994
+ "loss": 0.4972,
3995
+ "step": 623
3996
+ },
3997
+ {
3998
+ "epoch": 1.77,
3999
+ "learning_rate": 1.7800500408423028e-05,
4000
+ "loss": 0.3295,
4001
+ "step": 624
4002
+ },
4003
+ {
4004
+ "epoch": 1.77,
4005
+ "learning_rate": 1.7375349954276233e-05,
4006
+ "loss": 0.4563,
4007
+ "step": 625
4008
+ },
4009
+ {
4010
+ "epoch": 1.77,
4011
+ "learning_rate": 1.695510759468746e-05,
4012
+ "loss": 0.3215,
4013
+ "step": 626
4014
+ },
4015
+ {
4016
+ "epoch": 1.78,
4017
+ "learning_rate": 1.653978462380139e-05,
4018
+ "loss": 0.5377,
4019
+ "step": 627
4020
+ },
4021
+ {
4022
+ "epoch": 1.78,
4023
+ "learning_rate": 1.6129392203552717e-05,
4024
+ "loss": 0.5608,
4025
+ "step": 628
4026
+ },
4027
+ {
4028
+ "epoch": 1.78,
4029
+ "learning_rate": 1.5723941363366102e-05,
4030
+ "loss": 0.4279,
4031
+ "step": 629
4032
+ },
4033
+ {
4034
+ "epoch": 1.78,
4035
+ "learning_rate": 1.5323442999859505e-05,
4036
+ "loss": 0.4503,
4037
+ "step": 630
4038
+ },
4039
+ {
4040
+ "epoch": 1.79,
4041
+ "learning_rate": 1.4927907876551716e-05,
4042
+ "loss": 0.3723,
4043
+ "step": 631
4044
+ },
4045
+ {
4046
+ "epoch": 1.79,
4047
+ "learning_rate": 1.4537346623572757e-05,
4048
+ "loss": 0.4459,
4049
+ "step": 632
4050
+ },
4051
+ {
4052
+ "epoch": 1.79,
4053
+ "learning_rate": 1.415176973737844e-05,
4054
+ "loss": 0.5126,
4055
+ "step": 633
4056
+ },
4057
+ {
4058
+ "epoch": 1.8,
4059
+ "learning_rate": 1.3771187580468115e-05,
4060
+ "loss": 0.4712,
4061
+ "step": 634
4062
+ },
4063
+ {
4064
+ "epoch": 1.8,
4065
+ "learning_rate": 1.3395610381106171e-05,
4066
+ "loss": 0.4301,
4067
+ "step": 635
4068
+ },
4069
+ {
4070
+ "epoch": 1.8,
4071
+ "learning_rate": 1.3025048233047266e-05,
4072
+ "loss": 0.4497,
4073
+ "step": 636
4074
+ },
4075
+ {
4076
+ "epoch": 1.8,
4077
+ "learning_rate": 1.2659511095264997e-05,
4078
+ "loss": 0.6653,
4079
+ "step": 637
4080
+ },
4081
+ {
4082
+ "epoch": 1.81,
4083
+ "learning_rate": 1.2299008791684174e-05,
4084
+ "loss": 0.4751,
4085
+ "step": 638
4086
+ },
4087
+ {
4088
+ "epoch": 1.81,
4089
+ "learning_rate": 1.1943551010916887e-05,
4090
+ "loss": 0.4593,
4091
+ "step": 639
4092
+ },
4093
+ {
4094
+ "epoch": 1.81,
4095
+ "learning_rate": 1.1593147306002183e-05,
4096
+ "loss": 0.4336,
4097
+ "step": 640
4098
+ },
4099
+ {
4100
+ "epoch": 1.81,
4101
+ "eval_loss": 0.5652015209197998,
4102
+ "eval_runtime": 29.5541,
4103
+ "eval_samples_per_second": 55.119,
4104
+ "eval_steps_per_second": 55.119,
4105
+ "step": 640
4106
+ },
4107
+ {
4108
+ "epoch": 1.81,
4109
+ "learning_rate": 1.1247807094149098e-05,
4110
+ "loss": 0.3976,
4111
+ "step": 641
4112
+ },
4113
+ {
4114
+ "epoch": 1.82,
4115
+ "learning_rate": 1.0907539656483745e-05,
4116
+ "loss": 0.4607,
4117
+ "step": 642
4118
+ },
4119
+ {
4120
+ "epoch": 1.82,
4121
+ "learning_rate": 1.0572354137799978e-05,
4122
+ "loss": 0.3328,
4123
+ "step": 643
4124
+ },
4125
+ {
4126
+ "epoch": 1.82,
4127
+ "learning_rate": 1.0242259546313327e-05,
4128
+ "loss": 0.3834,
4129
+ "step": 644
4130
+ },
4131
+ {
4132
+ "epoch": 1.83,
4133
+ "learning_rate": 9.91726475341912e-06,
4134
+ "loss": 0.3841,
4135
+ "step": 645
4136
+ },
4137
+ {
4138
+ "epoch": 1.83,
4139
+ "learning_rate": 9.597378493454013e-06,
4140
+ "loss": 0.4061,
4141
+ "step": 646
4142
+ },
4143
+ {
4144
+ "epoch": 1.83,
4145
+ "learning_rate": 9.282609363461281e-06,
4146
+ "loss": 0.5084,
4147
+ "step": 647
4148
+ },
4149
+ {
4150
+ "epoch": 1.83,
4151
+ "learning_rate": 8.972965822959678e-06,
4152
+ "loss": 0.4186,
4153
+ "step": 648
4154
+ },
4155
+ {
4156
+ "epoch": 1.84,
4157
+ "learning_rate": 8.668456193716057e-06,
4158
+ "loss": 0.4335,
4159
+ "step": 649
4160
+ },
4161
+ {
4162
+ "epoch": 1.84,
4163
+ "learning_rate": 8.369088659522018e-06,
4164
+ "loss": 0.4099,
4165
+ "step": 650
4166
+ },
4167
+ {
4168
+ "epoch": 1.84,
4169
+ "learning_rate": 8.074871265973572e-06,
4170
+ "loss": 0.4574,
4171
+ "step": 651
4172
+ },
4173
+ {
4174
+ "epoch": 1.85,
4175
+ "learning_rate": 7.785811920255093e-06,
4176
+ "loss": 0.3767,
4177
+ "step": 652
4178
+ },
4179
+ {
4180
+ "epoch": 1.85,
4181
+ "learning_rate": 7.501918390926932e-06,
4182
+ "loss": 0.4218,
4183
+ "step": 653
4184
+ },
4185
+ {
4186
+ "epoch": 1.85,
4187
+ "learning_rate": 7.223198307716428e-06,
4188
+ "loss": 0.4847,
4189
+ "step": 654
4190
+ },
4191
+ {
4192
+ "epoch": 1.85,
4193
+ "learning_rate": 6.949659161312871e-06,
4194
+ "loss": 0.3806,
4195
+ "step": 655
4196
+ },
4197
+ {
4198
+ "epoch": 1.86,
4199
+ "learning_rate": 6.6813083031664005e-06,
4200
+ "loss": 0.467,
4201
+ "step": 656
4202
+ },
4203
+ {
4204
+ "epoch": 1.86,
4205
+ "learning_rate": 6.418152945290224e-06,
4206
+ "loss": 0.4087,
4207
+ "step": 657
4208
+ },
4209
+ {
4210
+ "epoch": 1.86,
4211
+ "learning_rate": 6.1602001600667755e-06,
4212
+ "loss": 0.5307,
4213
+ "step": 658
4214
+ },
4215
+ {
4216
+ "epoch": 1.87,
4217
+ "learning_rate": 5.907456880057871e-06,
4218
+ "loss": 0.3665,
4219
+ "step": 659
4220
+ },
4221
+ {
4222
+ "epoch": 1.87,
4223
+ "learning_rate": 5.659929897818095e-06,
4224
+ "loss": 0.3534,
4225
+ "step": 660
4226
+ },
4227
+ {
4228
+ "epoch": 1.87,
4229
+ "eval_loss": 0.5697055459022522,
4230
+ "eval_runtime": 29.5456,
4231
+ "eval_samples_per_second": 55.135,
4232
+ "eval_steps_per_second": 55.135,
4233
+ "step": 660
4234
+ },
4235
+ {
4236
+ "epoch": 1.87,
4237
+ "learning_rate": 5.417625865712506e-06,
4238
+ "loss": 0.4096,
4239
+ "step": 661
4240
+ },
4241
+ {
4242
+ "epoch": 1.87,
4243
+ "learning_rate": 5.180551295737734e-06,
4244
+ "loss": 0.3822,
4245
+ "step": 662
4246
+ },
4247
+ {
4248
+ "epoch": 1.88,
4249
+ "learning_rate": 4.9487125593469244e-06,
4250
+ "loss": 0.4499,
4251
+ "step": 663
4252
+ },
4253
+ {
4254
+ "epoch": 1.88,
4255
+ "learning_rate": 4.7221158872786e-06,
4256
+ "loss": 0.4191,
4257
+ "step": 664
4258
+ },
4259
+ {
4260
+ "epoch": 1.88,
4261
+ "learning_rate": 4.500767369389158e-06,
4262
+ "loss": 0.4676,
4263
+ "step": 665
4264
+ },
4265
+ {
4266
+ "epoch": 1.89,
4267
+ "learning_rate": 4.284672954489177e-06,
4268
+ "loss": 0.379,
4269
+ "step": 666
4270
+ },
4271
+ {
4272
+ "epoch": 1.89,
4273
+ "learning_rate": 4.073838450183654e-06,
4274
+ "loss": 0.4382,
4275
+ "step": 667
4276
+ },
4277
+ {
4278
+ "epoch": 1.89,
4279
+ "learning_rate": 3.8682695227158174e-06,
4280
+ "loss": 0.3908,
4281
+ "step": 668
4282
+ },
4283
+ {
4284
+ "epoch": 1.89,
4285
+ "learning_rate": 3.667971696814787e-06,
4286
+ "loss": 0.4563,
4287
+ "step": 669
4288
+ },
4289
+ {
4290
+ "epoch": 1.9,
4291
+ "learning_rate": 3.4729503555472663e-06,
4292
+ "loss": 0.4164,
4293
+ "step": 670
4294
+ },
4295
+ {
4296
+ "epoch": 1.9,
4297
+ "learning_rate": 3.2832107401727928e-06,
4298
+ "loss": 0.361,
4299
+ "step": 671
4300
+ },
4301
+ {
4302
+ "epoch": 1.9,
4303
+ "learning_rate": 3.0987579500028062e-06,
4304
+ "loss": 0.4599,
4305
+ "step": 672
4306
+ },
4307
+ {
4308
+ "epoch": 1.91,
4309
+ "learning_rate": 2.919596942263736e-06,
4310
+ "loss": 0.4045,
4311
+ "step": 673
4312
+ },
4313
+ {
4314
+ "epoch": 1.91,
4315
+ "learning_rate": 2.7457325319636408e-06,
4316
+ "loss": 0.4345,
4317
+ "step": 674
4318
+ },
4319
+ {
4320
+ "epoch": 1.91,
4321
+ "learning_rate": 2.5771693917629345e-06,
4322
+ "loss": 0.5191,
4323
+ "step": 675
4324
+ },
4325
+ {
4326
+ "epoch": 1.91,
4327
+ "learning_rate": 2.4139120518486657e-06,
4328
+ "loss": 0.444,
4329
+ "step": 676
4330
+ },
4331
+ {
4332
+ "epoch": 1.92,
4333
+ "learning_rate": 2.2559648998128792e-06,
4334
+ "loss": 0.4587,
4335
+ "step": 677
4336
+ },
4337
+ {
4338
+ "epoch": 1.92,
4339
+ "learning_rate": 2.1033321805346896e-06,
4340
+ "loss": 0.4841,
4341
+ "step": 678
4342
+ },
4343
+ {
4344
+ "epoch": 1.92,
4345
+ "learning_rate": 1.9560179960661283e-06,
4346
+ "loss": 0.3539,
4347
+ "step": 679
4348
+ },
4349
+ {
4350
+ "epoch": 1.93,
4351
+ "learning_rate": 1.8140263055219209e-06,
4352
+ "loss": 0.4728,
4353
+ "step": 680
4354
+ },
4355
+ {
4356
+ "epoch": 1.93,
4357
+ "eval_loss": 0.5713478922843933,
4358
+ "eval_runtime": 29.5401,
4359
+ "eval_samples_per_second": 55.145,
4360
+ "eval_steps_per_second": 55.145,
4361
+ "step": 680
4362
+ },
4363
+ {
4364
+ "epoch": 1.93,
4365
+ "learning_rate": 1.6773609249731703e-06,
4366
+ "loss": 0.5651,
4367
+ "step": 681
4368
+ },
4369
+ {
4370
+ "epoch": 1.93,
4371
+ "learning_rate": 1.5460255273447077e-06,
4372
+ "loss": 0.5959,
4373
+ "step": 682
4374
+ },
4375
+ {
4376
+ "epoch": 1.93,
4377
+ "learning_rate": 1.4200236423163704e-06,
4378
+ "loss": 0.5015,
4379
+ "step": 683
4380
+ },
4381
+ {
4382
+ "epoch": 1.94,
4383
+ "learning_rate": 1.2993586562282112e-06,
4384
+ "loss": 0.5174,
4385
+ "step": 684
4386
+ },
4387
+ {
4388
+ "epoch": 1.94,
4389
+ "learning_rate": 1.1840338119894822e-06,
4390
+ "loss": 0.3708,
4391
+ "step": 685
4392
+ },
4393
+ {
4394
+ "epoch": 1.94,
4395
+ "learning_rate": 1.0740522089913941e-06,
4396
+ "loss": 0.4129,
4397
+ "step": 686
4398
+ },
4399
+ {
4400
+ "epoch": 1.95,
4401
+ "learning_rate": 9.694168030239148e-07,
4402
+ "loss": 0.4747,
4403
+ "step": 687
4404
+ },
4405
+ {
4406
+ "epoch": 1.95,
4407
+ "learning_rate": 8.701304061962789e-07,
4408
+ "loss": 0.3967,
4409
+ "step": 688
4410
+ },
4411
+ {
4412
+ "epoch": 1.95,
4413
+ "learning_rate": 7.761956868614473e-07,
4414
+ "loss": 0.3929,
4415
+ "step": 689
4416
+ },
4417
+ {
4418
+ "epoch": 1.95,
4419
+ "learning_rate": 6.876151695443867e-07,
4420
+ "loss": 0.4657,
4421
+ "step": 690
4422
+ },
4423
+ {
4424
+ "epoch": 1.96,
4425
+ "learning_rate": 6.043912348741465e-07,
4426
+ "loss": 0.4274,
4427
+ "step": 691
4428
+ },
4429
+ {
4430
+ "epoch": 1.96,
4431
+ "learning_rate": 5.265261195200211e-07,
4432
+ "loss": 0.5102,
4433
+ "step": 692
4434
+ },
4435
+ {
4436
+ "epoch": 1.96,
4437
+ "learning_rate": 4.5402191613130864e-07,
4438
+ "loss": 0.4686,
4439
+ "step": 693
4440
+ },
4441
+ {
4442
+ "epoch": 1.96,
4443
+ "learning_rate": 3.8688057328113425e-07,
4444
+ "loss": 0.397,
4445
+ "step": 694
4446
+ },
4447
+ {
4448
+ "epoch": 1.97,
4449
+ "learning_rate": 3.251038954140917e-07,
4450
+ "loss": 0.4532,
4451
+ "step": 695
4452
+ },
4453
+ {
4454
+ "epoch": 1.97,
4455
+ "learning_rate": 2.6869354279770444e-07,
4456
+ "loss": 0.3698,
4457
+ "step": 696
4458
+ },
4459
+ {
4460
+ "epoch": 1.97,
4461
+ "learning_rate": 2.1765103147783905e-07,
4462
+ "loss": 0.4519,
4463
+ "step": 697
4464
+ },
4465
+ {
4466
+ "epoch": 1.98,
4467
+ "learning_rate": 1.7197773323791577e-07,
4468
+ "loss": 0.4861,
4469
+ "step": 698
4470
+ },
4471
+ {
4472
+ "epoch": 1.98,
4473
+ "learning_rate": 1.3167487556213775e-07,
4474
+ "loss": 0.5166,
4475
+ "step": 699
4476
+ },
4477
+ {
4478
+ "epoch": 1.98,
4479
+ "learning_rate": 9.67435416023843e-08,
4480
+ "loss": 0.5159,
4481
+ "step": 700
4482
+ },
4483
+ {
4484
+ "epoch": 1.98,
4485
+ "eval_loss": 0.5703364014625549,
4486
+ "eval_runtime": 29.5151,
4487
+ "eval_samples_per_second": 55.192,
4488
+ "eval_steps_per_second": 55.192,
4489
+ "step": 700
4490
+ },
4491
+ {
4492
+ "epoch": 1.98,
4493
+ "learning_rate": 6.718467014918962e-08,
4494
+ "loss": 0.3659,
4495
+ "step": 701
4496
+ },
4497
+ {
4498
+ "epoch": 1.99,
4499
+ "learning_rate": 4.299905560642969e-08,
4500
+ "loss": 0.4171,
4501
+ "step": 702
4502
+ },
4503
+ {
4504
+ "epoch": 1.99,
4505
+ "learning_rate": 2.418734797009492e-08,
4506
+ "loss": 0.3435,
4507
+ "step": 703
4508
+ },
4509
+ {
4510
+ "epoch": 1.99,
4511
+ "learning_rate": 1.075005281070407e-08,
4512
+ "loss": 0.5624,
4513
+ "step": 704
4514
+ },
4515
+ {
4516
+ "epoch": 2.0,
4517
+ "learning_rate": 2.6875312597374193e-09,
4518
+ "loss": 0.4061,
4519
+ "step": 705
4520
+ },
4521
+ {
4522
+ "epoch": 2.0,
4523
+ "learning_rate": 0.0,
4524
+ "loss": 0.3871,
4525
+ "step": 706
4526
+ }
4527
+ ],
4528
+ "logging_steps": 1,
4529
+ "max_steps": 706,
4530
+ "num_train_epochs": 2,
4531
+ "save_steps": 500,
4532
+ "total_flos": 1.8453659621743657e+18,
4533
+ "trial_name": null,
4534
+ "trial_params": null
4535
+ }
checkpoint-706/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fc29491a898700f15de2024fec703fbc3c0e47ff2a1808b6210d1914f87ee43
3
+ size 4475
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "meta-llama/Llama-2-7b-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 4096,
14
+ "model_type": "llama",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 32,
18
+ "pretraining_tp": 1,
19
+ "quantization_config": {
20
+ "bnb_4bit_compute_dtype": "bfloat16",
21
+ "bnb_4bit_quant_type": "nf4",
22
+ "bnb_4bit_use_double_quant": true,
23
+ "llm_int8_enable_fp32_cpu_offload": false,
24
+ "llm_int8_has_fp16_weight": false,
25
+ "llm_int8_skip_modules": null,
26
+ "llm_int8_threshold": 6.0,
27
+ "load_in_4bit": true,
28
+ "load_in_8bit": false,
29
+ "quant_method": "bitsandbytes"
30
+ },
31
+ "rms_norm_eps": 1e-05,
32
+ "rope_scaling": null,
33
+ "rope_theta": 10000.0,
34
+ "tie_word_embeddings": false,
35
+ "torch_dtype": "float16",
36
+ "transformers_version": "4.34.1",
37
+ "use_cache": false,
38
+ "vocab_size": 32000
39
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "bos_token": "<s>",
31
+ "clean_up_tokenization_spaces": false,
32
+ "eos_token": "</s>",
33
+ "legacy": false,
34
+ "model_max_length": 1000000000000000019884624838656,
35
+ "pad_token": "</s>",
36
+ "padding_side": "right",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "trust_remote_code": false,
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": true,
43
+ "use_fast": true
44
+ }