oldiday commited on
Commit
30c0b38
·
verified ·
1 Parent(s): bedd9ed

End of training

Browse files
Files changed (3) hide show
  1. README.md +168 -0
  2. adapter_model.bin +3 -0
  3. adapter_model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: heegyu/WizardVicuna-open-llama-3b-v2
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: d988ac6e-04c5-4253-a955-6ed8e3c56fd0
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: heegyu/WizardVicuna-open-llama-3b-v2
23
+ bf16: true
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - d9d7d4d53cd139ac_train_data.json
29
+ ds_type: json
30
+ format: custom
31
+ path: /workspace/input_data/d9d7d4d53cd139ac_train_data.json
32
+ type:
33
+ field_instruction: prompt
34
+ field_output: chosen
35
+ format: '{instruction}'
36
+ no_input_format: '{instruction}'
37
+ system_format: '{system}'
38
+ system_prompt: ''
39
+ debug: null
40
+ deepspeed: null
41
+ device_map: auto
42
+ do_eval: true
43
+ early_stopping_patience: 5
44
+ eval_batch_size: 4
45
+ eval_max_new_tokens: 128
46
+ eval_steps: 50
47
+ eval_table_size: null
48
+ evals_per_epoch: null
49
+ flash_attention: true
50
+ fp16: false
51
+ fsdp: null
52
+ fsdp_config: null
53
+ gradient_accumulation_steps: 4
54
+ gradient_checkpointing: true
55
+ group_by_length: true
56
+ hub_model_id: oldiday/d988ac6e-04c5-4253-a955-6ed8e3c56fd0
57
+ hub_repo: null
58
+ hub_strategy: checkpoint
59
+ hub_token: null
60
+ learning_rate: 0.0002
61
+ load_in_4bit: false
62
+ load_in_8bit: false
63
+ local_rank: null
64
+ logging_steps: 10
65
+ lora_alpha: 64
66
+ lora_dropout: 0.2
67
+ lora_fan_in_fan_out: null
68
+ lora_model_dir: null
69
+ lora_r: 32
70
+ lora_target_linear: true
71
+ lr_scheduler: cosine
72
+ max_grad_norm: 1.0
73
+ max_memory:
74
+ 0: 75GB
75
+ max_steps: 600
76
+ micro_batch_size: 8
77
+ mlflow_experiment_name: /tmp/d9d7d4d53cd139ac_train_data.json
78
+ model_type: AutoModelForCausalLM
79
+ num_epochs: 3
80
+ optim_args:
81
+ adam_beta1: 0.9
82
+ adam_beta2: 0.95
83
+ adam_epsilon: 1.0e-05
84
+ optimizer: adamw_bnb_8bit
85
+ output_dir: miner_id_24
86
+ pad_to_sequence_len: true
87
+ resume_from_checkpoint: null
88
+ s2_attention: null
89
+ sample_packing: false
90
+ save_steps: 150
91
+ saves_per_epoch: null
92
+ sequence_len: 1024
93
+ special_tokens:
94
+ pad_token: </s>
95
+ strict: false
96
+ tf32: true
97
+ tokenizer_type: AutoTokenizer
98
+ train_on_inputs: false
99
+ trust_remote_code: true
100
+ val_set_size: 0.05
101
+ wandb_entity: techspear-hub
102
+ wandb_mode: online
103
+ wandb_name: 3e871e76-35d0-4442-aa96-25ec4560a479
104
+ wandb_project: Gradients-On-Six
105
+ wandb_run: your_name
106
+ wandb_runid: 3e871e76-35d0-4442-aa96-25ec4560a479
107
+ warmup_steps: 10
108
+ weight_decay: 0.0
109
+ xformers_attention: null
110
+
111
+ ```
112
+
113
+ </details><br>
114
+
115
+ # d988ac6e-04c5-4253-a955-6ed8e3c56fd0
116
+
117
+ This model is a fine-tuned version of [heegyu/WizardVicuna-open-llama-3b-v2](https://huggingface.co/heegyu/WizardVicuna-open-llama-3b-v2) on the None dataset.
118
+ It achieves the following results on the evaluation set:
119
+ - Loss: 2.2613
120
+
121
+ ## Model description
122
+
123
+ More information needed
124
+
125
+ ## Intended uses & limitations
126
+
127
+ More information needed
128
+
129
+ ## Training and evaluation data
130
+
131
+ More information needed
132
+
133
+ ## Training procedure
134
+
135
+ ### Training hyperparameters
136
+
137
+ The following hyperparameters were used during training:
138
+ - learning_rate: 0.0002
139
+ - train_batch_size: 8
140
+ - eval_batch_size: 4
141
+ - seed: 42
142
+ - gradient_accumulation_steps: 4
143
+ - total_train_batch_size: 32
144
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
145
+ - lr_scheduler_type: cosine
146
+ - lr_scheduler_warmup_steps: 10
147
+ - training_steps: 314
148
+
149
+ ### Training results
150
+
151
+ | Training Loss | Epoch | Step | Validation Loss |
152
+ |:-------------:|:------:|:----:|:---------------:|
153
+ | No log | 0.0095 | 1 | 3.0944 |
154
+ | 1.9072 | 0.4773 | 50 | 2.1789 |
155
+ | 1.8906 | 0.9547 | 100 | 2.0402 |
156
+ | 1.4029 | 1.4320 | 150 | 2.0693 |
157
+ | 1.4044 | 1.9093 | 200 | 2.0268 |
158
+ | 0.8775 | 2.3866 | 250 | 2.2578 |
159
+ | 0.9619 | 2.8640 | 300 | 2.2613 |
160
+
161
+
162
+ ### Framework versions
163
+
164
+ - PEFT 0.13.2
165
+ - Transformers 4.46.0
166
+ - Pytorch 2.5.0+cu124
167
+ - Datasets 3.0.1
168
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4eb16934183c18a531c945a4b611eac44a1934fc07e48ef4ebd146d7699e07a2
3
+ size 203538938
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d71656de7243d84506152c7849c9f971e2b320dd1b61fff32f71eb66e06ee91e
3
  size 203456160
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8dbdc4dbed294847252baf136a6b76afa7d4691744b6516f11426474af411939
3
  size 203456160